Cationic Albumin Encapsulated DNA Origami for Enhanced Cellular Transfection and Stability.

Materials (Basel)

Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics, Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China.

Published: March 2019

DNA nanostructures, owing to their controllable and adaptable nature, have been considered as highly attractive nanoplatforms for biomedical applications in recent years. However, their use in the biological environment has been restricted by low cellular transfection efficiency in mammalian cells, weak stability under physiological conditions, and endonuclease degradation. Herein, we demonstrate an effective approach to facilitate fast transfection of DNA nanostructures and enhance their stability by encapsulating DNA origami with a biocompatible cationic protein (cHSA) via electrostatic interaction. The coated DNA origami is found to be stable under physiological conditions. Moreover, the cHSA coating could significantly improve the cellular transfection efficiency of DNA origami, which is essential for biological applications.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6470866PMC
http://dx.doi.org/10.3390/ma12060949DOI Listing

Publication Analysis

Top Keywords

dna origami
16
cellular transfection
12
dna nanostructures
8
transfection efficiency
8
physiological conditions
8
dna
6
cationic albumin
4
albumin encapsulated
4
encapsulated dna
4
origami
4

Similar Publications

Human lens epithelial cells (hLECs) are critical for lens transparency, and their aberrant metabolic activity and gene expression can lead to cataract. Intracellular delivery to hLECs, especially to sub-cellular organelles (e.g.

View Article and Find Full Text PDF

DNA nanotechnology has made initial progress toward developing gene-encoded DNA origami nanoparticles (NPs) that display potential utility for future gene therapy applications. However, due to the challenges involved with gene delivery into cells including transport through the membrane, intracellular targeting, and inherent expression of nucleases along with interference from other active proteins, it can be difficult to more directly study the effect of DNA NP design on subsequent gene expression. In this work, we demonstrate an approach for studying the expression of gene-encoding DNA origami NPs without the use of cells.

View Article and Find Full Text PDF

Synthetic ssDNA oligonucleotides hold great potential for various applications, including DNA aptamers, DNA digital data storage, DNA origami, and synthetic genomes. In these contexts, precise control over the synthesis of the ssDNA strands is essential for generating combinatorial sequences with user-defined parameters. Desired features for creating synthetic DNA oligonucleotides include easy manipulation of DNA strands, effective detection of unique DNA sequences, and a straightforward mechanism for strand elongation and termination.

View Article and Find Full Text PDF

Dynamic Genomic Imaging and Tracking in Living Cells by a DNA Origami-Based CRISPR‒dCas9 System.

Small Methods

January 2025

Institute of Molecular Medicine (IMM), Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China.

The clustered regularly interspaced short palindromic repeat (CRISPR)-associated system has displayed promise in visualizing the dynamics of target loci in living cells, which is important for studying genome regulation. However, developing a cell-friendly and rapid transfection method for achieving dynamic and long-term genomic imaging in living cells with high specificity and accuracy is still challenging. Herein, a robust and versatile method is presented that employs a barrel-shaped DNA nanostructure (TUBE) modified with aptamers for loading, protecting, and delivering CRISPR-Cas9 to visualize specific genomic loci in living cells.

View Article and Find Full Text PDF

Parameter Pool-Assisted Centrifugation Sorter for Multiscale Higher-Order DNA Nanomaterials.

ACS Nano

January 2025

State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing 210023, China.

Higher-order DNA nanomaterials have emerged as programmable tools for probing biological processes, constructing metamaterials, and manipulating mechanically active nanodevices with the multifunctionality and high-performance attributes. However, their utility is limited by intricate mixtures formed during hierarchical multistage assembly, as standard techniques like gel electrophoresis lack the resolution and applicability needed for precise characterization and enrichment. Thus, it is urgent to develop a sorter that provides high separation resolution, broad scope, and bioactive functionality.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!