Model Based on an Effective Material-Removal Rate to Evaluate Specific Energy Consumption in Grinding.

Materials (Basel)

Department of Fluid Mechanics (EEBE), Universidad Politécnica de Cataluña, Av. Eduard Maristany, 16, 08019 Barcelona, Spain.

Published: March 2019

Grinding energy efficiency depends on the appropriate selection of cutting conditions, grinding wheel, and workpiece material. Additionally, the estimation of specific energy consumption is a good indicator to control the consumed energy during the grinding process. Consequently, this study develops a model of material-removal rate to estimate specific energy consumption based on the measurement of active power consumed in a plane surface grinding of C45K with different thermal treatments and AISI 304. This model identifies and evaluates the dissipated power by sliding, ploughing, and chip formation in an industrial-scale grinding process. Furthermore, the instantaneous positions of abrasive grains during cutting are described to study the material-removal rate. The estimation of specific chip-formation energy is similar to that described by other authors on a laboratory scale, which allows to validate the model and experiments. Finally, the results show that the energy consumed by sliding is the main mechanism of energy dissipation in an industrial-scale grinding process, where it is denoted that sliding energy by volume unity decreases as the depth of cut and the speed of the workpiece increase.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6470894PMC
http://dx.doi.org/10.3390/ma12060939DOI Listing

Publication Analysis

Top Keywords

material-removal rate
12
specific energy
12
energy consumption
12
grinding process
12
energy
9
estimation specific
8
industrial-scale grinding
8
grinding
7
model
4
model based
4

Similar Publications

The process of micromachining has garnered attention for its ability to create three-dimensional tiny features, particularly in ultra-hard and exotic materials. The present work investigates the effect of different parameters of the µ-ED milling, such as pulse on time (Ton), pulse off time (Toff), voltage (V), and tool rotation (TR) on the dimensional deviation (DD), material removal rate (MRR), surface roughness (Ra), and machined surface characteristics (analysed by EDS and FESEM). The sesame oil as dielectric and tungsten-copper as tool electrodes were used to maintain the accuracy and improve the machinability of bio-grade Nitinol SMA.

View Article and Find Full Text PDF

The manufacturing precision of electro-hydraulic servo valve sleeves is critical to the performance and longevity of the valves. To ensure the service life of these valves, the valve sleeve is typically made from high-hardness martensitic stainless steel, which is considered a hard-to-cut material. Current honing methods often suffer from inefficiency and instability.

View Article and Find Full Text PDF

As an environment-friendly material, graphene oxide nanosheet can effectively improve the polishing surface quality of single crystal diamond workpieces. However, the lubricating and chemical effects of graphene oxide nanosheets have an uncertain impact on the polishing material removal rate. In this paper, the graphene oxide-enhanced hybrid slurry was prepared with good stability.

View Article and Find Full Text PDF

Cobalt-bonded tungsten carbide (WC-Co) is widely used in heavy-duty machining applications due to its exceptional hardness and wear resistance, and it is increasingly being adopted in industries such as aerospace and the automotive sector, among others. Its superior mechanical properties make it difficult to machine with conventional methods such as turning or milling. Electrical Discharge Machining (EDM) has emerged as an efficient alternative, as it allows for the machining of hard materials to be carried out without direct contact between the tool and the workpiece, provided that the material has sufficient electrical conductivity.

View Article and Find Full Text PDF

This study aims to optimize the Wire Electrical Discharge Machining (EDM) process parameters for aluminum 6061 alloy reinforced with Mg and MoS using the Box-Behnken (BBD) design and the non-dominated sorting genetic (NSGA-II) algorithm. The objective is to enhance the machining efficiency and quality of the composite material. The Box-Behnken (BBD) design was utilized to design a set of experiments with varying levels of process parameters, comprising pulse-on time, servo volt, and current.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!