In this study we have investigated the effects of pH and surfactant on the internal charge transfer (ICT) process in the DSNN derivative, DSNN-NMe (4,4'-bis(4'-(N,N-bis(6″-(N,N,N-trimethylammonium)hexyl)amino)-styryl) naphthalene tetraiodide) with the aim to show that environmentally-induced changes in the degree of ICT process determine the spectral response of the DSNN chromophore. Obtained results showed that DSNN chromophore exhibits evident changes in linear optical properties (absorption/emission wavelengths, quantum yield) upon protonation. These changes are a manifestation of the attenuation of the internal charge transfer processes, which accompanies binding of proton to the nitrogen atoms of the dialkylamino groups at the termini of DSNN chromophore. The results obtained in this study clearly demonstrated the sensitivity of the ICT process in DSNN upon protonation, which, together with the affinity of DSNN towards biological and artificial membranes, may open new perspectives for its utility in fluorescence-based sensing. Moreover, the studied compound showed substantial surfactochromic effects in the ionic and non-ionic surfactant solutions, which indicate the formation of various self-organized DSNN-surfactant aggregates. The structure of these aggregates is determined by the type of specific intermolecular interactions between the chromophore and surfactant molecules. The knowledge of the nature of these interactions may be substantial in the future development of DSNN-based sensing platforms with suitable optical properties.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.saa.2019.03.037 | DOI Listing |
Photosynth Res
January 2025
Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Leninskie Gory, Moscow, Russia, 119991.
The femtosecond dynamics of energy transfer from light-excited spirilloxanthin (Spx) to bacteriochlorophyll (BChl) a in the reaction centers (RCs) of purple photosynthetic bacteria Rhodospirillum rubrum was studied. According to crio-electron microscopy data, Spx is located near accessory BChl a in the B-branch of cofactors. Spx was excited by 25 fs laser pulses at 490 nm, and difference absorption spectra were recorded in the range 500-700 nm.
View Article and Find Full Text PDFGastrointest Endosc
January 2025
Department of Gastroenterology and Hepatology, University of Arkansas for Medical Sciences. Little Rock, Arkansas, USA.
Background And Aims: Malignant gastric outlet obstruction (MGOO) is an unfortunate complication of advanced upper gastrointestinal malignancies. Historically, surgical gastrojejunostomy has been the procedure of choice to achieve enteral bypass. Recently, endoscopic techniques have gained popularity in the management of MGOO.
View Article and Find Full Text PDFAdv Pharmacol Pharm Sci
January 2025
Research Administrative Operations, Research and Innovation, King Faisal Specialist Hospital & Research Center, P.O. Box 3354, MBC-03, Riyadh 11211, Saudi Arabia.
A simple and efficient validated assay for quantifying 21-deoxycortisol (21-DOC), 17-hydroxyprogesterone (17-OHP), cortisol, and cortisone in human plasma has been developed using ultra-high performance liquid chromatography coupled with tandem mass spectrometry (UHPLC-MS/MS). Analysis of plasma samples were performed on Atlantis dC18 (3 m) column using a mobile phase of 20.0 mM ammonium acetate and acetonitrile (50:50, : ) that was delivered at isocratic flow rate 0.
View Article and Find Full Text PDFSmall
January 2025
Key Lab of Marin Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao, 266100, P. R. China.
Altering the generation route of reactive species is a potent means to augment the photocatalytic activity. In this study, MoS/MIL-101(Fe) S-scheme heterojunction (MF2) is prepared using a water/solvent thermal method for photocatalytic degradation of chlorsulfuron. Driven by the internal electric field, the local electron density of MF2 is redistributed, thus enhancing the adsorption of O.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei 230009, China.
Photoelectrochemical (PEC) water splitting offers an ideal strategy for the development of clean and renewable energy. However, its practical implementation is often inhibited by the high recombination rate of photogenerated charge carriers and the instability of photoanodes. Introducing defect engineering (such as oxygen vacancies) and constructing internal electric field-modulated Z-scheme heteronanostructures (HNs) can be considered as effective approaches to overcome these obstacles.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!