This work reports a microfluidic paper-based photoelectrochemical (μ-PEC) sensing platform for thrombin (TB) detection with electron-transfer tunneling distance regulation (ETTDR) and aptamer target-triggering nicking enzyme signaling amplification (NESA) dual strategies. Specifically, paper-based TiO nanosheets (PTNs) were prepared with an efficient hydrothermal process, serving as the direct pathway for the charge carriers transfer. When CeO-labeled hairpin DNA 3 (HP3) was closely located at the PTNs, the CeO-PTNs heterostructure was formed, which could great facilitate the photogenerated carries separation of CeO. In addition, with the aid of aptamer target-triggering NESA strategy, the input TB could be transducted to numerous output target of DNA (tDNA), achieving the goal of desirable signal amplification. In the presence of TB, the output tDNA could be further hybridized with HP3 and unfold its hairpin loop, which forced the CeO away from the surface of PTNs and vanished the CeO-PTNs heterostructure, resulting in the obviously reducing of photocurrent signal. The as-designed sensing platform exhibited a linear range from 0.02 pM to 100 pM with a detection limit of 6.7 fM. Importantly, this μ-PEC sensing platform could not only realize the highly efficient TB detection, but also pave a luciferous way for the detection of other protein in bioanalysis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bios.2019.03.022 | DOI Listing |
Mikrochim Acta
January 2025
College of Geography and Environmental Sciences, College of Chemistry and Materials Science, Zhejiang Normal University, Jinhua, 321004, China.
Myoglobin (Mb), an important cardiac marker, plays a crucial role in diagnosing, monitoring, and evaluating the condition of patients with cardiovascular diseases. Here, we propose a label-free photoelectrochemical (PEC) sensor for the detection of Mb through target regulated the photoactivity of AgS/FeOOH heterojunction. The AgS/FeOOH nanospindles were synthesized and served as a sensing platform for the fabrication of bio-recognized process for Mb.
View Article and Find Full Text PDFSoc Psychiatry Psychiatr Epidemiol
January 2025
College of Education, Psychology and Social Work, Flinders University, Adelaide, Australia.
Purpose: Meaningful connections, encompassing relationships providing emotional support, understanding, acceptance, and a sense of belonging, are vital for social inclusion and well-being of Individuals with serious mental illness (SMI). The mixed methods review critically explored multifaceted approaches supporting people with SMI to foster meaningful (non-intimate) social relationships or connections.
Methods: Searches of eight electronic databases returned 4882 records.
Nano Lett
January 2025
Department of Electrical and Computer Engineering, Northwestern University, Evanston, Illinois 60208, United States.
Metasurfaces supporting narrowband resonances are of significant interest in photonics for molecular sensing, quantum light source engineering, and nonlinear photonics. However, many device architectures rely on large refractive index dielectric materials and lengthy fabrication processes. In this work, we demonstrate quasi-bound states in the continuum (quasi-BICs) using a polymer metasurface exhibiting experimental quality factors of 305 at visible wavelengths.
View Article and Find Full Text PDFNat Commun
January 2025
Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, Pennsylvania, 16802, USA.
Despite rapid developments of wearable self-powered sensors, it is still elusive to decouple the simultaneously applied multiple input signals. Herein, we report the design and demonstration of stretchable thermoelectric porous graphene foam-based materials via facile laser scribing for self-powered decoupled strain and temperature sensing. The resulting sensor can accurately detect temperature with a resolution of 0.
View Article and Find Full Text PDFAnal Chem
January 2025
Institute of Eco-Environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China.
A sensitive fluorescence biosensor was developed for microcystin-LR (MC-LR) detection using H1, H2, and H3 DNA probes as sensing elements. The aptamer in H1 can recognize the target. H2 was labeled with FAM and BHQ.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!