Nanomaterial-Supported Enzymes for Water Purification and Monitoring in Point-of-Use Water Supply Systems.

Acc Chem Res

Department of Civil and Environmental Engineering , University of California, Los Angeles , California 90095 , United States.

Published: April 2019

AI Article Synopsis

  • Increasing pollution in global water sources and the difficulties in quickly detecting and treating contaminants are major public health issues, especially in rural areas where centralized water systems are impractical.
  • Point-of-use (POU) water supply systems are a cost-effective and efficient way to address these challenges, but current systems struggle with emerging contaminants at low concentrations.
  • Nanosupported enzymes show promise for enhancing the effectiveness of POU systems by improving enzyme stability and selectivity, allowing for better water purification, disinfection, and contaminant detection at trace levels.

Article Abstract

Increasing pollution of global water sources and challenges in rapid detection and treatment of the wide range of contaminants pose considerable burdens on public health. The issue is particularly critical in rural areas, where building of centralized water treatment systems and pipe infrastructure to connect dispersed populations is not always practical. Point-of-use (POU) water supply systems provide cost-effective and energy-efficient approaches to store, treat, and monitor the quality of water. Currently available POU systems have limited success in dealing with the portfolio of emerging contaminants, particularly those present at trace concentrations. A site-to-site variation in contaminant species and concentrations also requires versatile POU systems to detect and treat contaminants and provide on-demand clean water. Among different technologies for developing rapid and sensitive water purification processes and sensors, enzymes offer one of the potential solutions because of their strong activity and selectivity toward chemical substrates. Many enzyme-nanomaterial composites have recently been developed that enhance enzymes' stability and activity and expand their functionality, thus facilitating the application of nanosupported enzymes in advanced POU systems. In this Account, we highlight the strengths and limitations of nanosupported enzymes for their potential applications in POU systems for water treatment as well as detection of contaminants, even at trace levels. We first summarize the mechanisms by which silica, carbon, and metallic nanosupports improve enzyme stability, selectivity, and catalysis. The unique immobilization properties and potential advantages of novel bioderived nanosupports over non-bioderived nanomaterials are emphasized. We illustrate prospective applications of nanosupported enzymes in POU systems with different roles: water purification, disinfection, and contaminant sensing. For each type of application, nanosupported enzymes offer higher performance than free enzymes. Nanosupports prolong enzymes' lifetimes and improve the rates of contaminant removal by concentrating contaminants near the enzymes. Nanosupports also stabilize antimicrobial enzymes while facilitating their attachment to bacterial surfaces, thereby increasing their potential uses for disinfection and prevention of biofouling in water purification and storage devices. As enzyme-based electrochemical sensors rely on electrochemical reactions of enzymatically generated species, the ability of conductive nanosupports to enhance enzyme activity and stability and to promote transfer of electrons onto the electrode greatly improves the sensitivity and durability of electroenzymatic contaminant sensors. Despite the promising results in laboratory settings, the application of nanosupported enzymes in real-world POU systems requires the implementation of multiple enzyme combinations and strategies for minimizing health risks associated with unintended releases of nanomaterials. Finally, we identify multidisciplinary research gaps in the development of nanosupported enzyme treatment systems and provide frameworks for the early adopters to make informed decisions on whether and how to use such POU systems.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.accounts.8b00613DOI Listing

Publication Analysis

Top Keywords

pou systems
28
nanosupported enzymes
20
water purification
16
application nanosupported
12
water
11
systems
11
enzymes
9
water supply
8
supply systems
8
water treatment
8

Similar Publications

Potential Candidate Genes Associated with Litter Size in Goats: A Review.

Animals (Basel)

January 2025

School of Agricultural Science and Engineering, Liaocheng University, Liaocheng 252000, China.

Article Synopsis
  • This review focuses on genetic markers that influence litter size in goats, a critical trait for enhancing productivity in small ruminant farming.
  • Goats are important for economic stability across various regions, but their reproductive efficiency is often low, impacting farm profitability.
  • Recent genetic research has identified several key genes connected to reproductive traits, which could help improve selective breeding programs and boost productivity by increasing litter sizes.
View Article and Find Full Text PDF

Surface Complexation and Packed Bed Mass Transport Models Enable Adsorbent Design for Arsenate and Vanadate Removal.

ACS ES T Eng

October 2024

School of Sustainable Engineering & the Built Environment, Arizona State University, Tempe, Arizona 85287, United States of America.

Article Synopsis
  • Co-occurrence of metal oxo-anions like arsenate in drinking water can be harmful to human health, motivating the study of how to better predict their behavior in adsorption systems.
  • By integrating surface complexation models with pore surface diffusion models, researchers accurately predicted the adsorption behaviors of single and mixed solutes, helping to understand how different adsorbents interact with these contaminants.
  • The findings emphasized that enhancing the capacity and reactivity of adsorbents is more effective for improving water purification systems than merely focusing on pore design to minimize transport limitations.
View Article and Find Full Text PDF

YY1 drives PARP1 expression essential for PARylation of NONO in mRNA maturation during neuroblastoma progression.

J Transl Med

December 2024

Department of Pediatric Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, Hubei Province, People's Republic of China.

Background: Neuroblastoma (NB), the most prevalent solid tumor in children, arises from sympathetic nervous system and accounts for 15% of pediatric cancer mortality. This malignancy exhibits substantial genetic and clinical heterogeneity, thus complicating treatment strategies. Poly(ADP-ribose) polymerase 1 (PARP1), a key enzyme catalyzing polyADP-ribosylation (PARylation), plays critical roles in various cellular processes, and contributes to tumorigenesis and aggressiveness.

View Article and Find Full Text PDF

Phenotypic plasticity plays an essential role in adaptive evolution. However, the molecular mechanisms of how genotype-by-environment interaction (G × E) effects shape phenotypic plasticity in marine organisms remain poorly understood. The crucial temperature-responsive trait triacylglycerol (TAG) content and its major gene adipose triglyceride lipase (Atgl) expression have divergent plastic patterns in two congeneric oyster species (Crassostrea gigas and Crassostrea angulata) to adapt to relative-cold/northern and relative-warm/southern habitats, respectively.

View Article and Find Full Text PDF

Construction of Photothermal Intelligent Membranes for Point-of-Use Water Treatment.

Molecules

December 2024

MOE Key Laboratory of Deep Earth Science and Engineering, College of Architecture & Environmental Engineering, Sichuan University, Chengdu 610065, China.

For the removal of waterborne pathogens in remote areas and disaster emergency situations, point-source water treatment methods are more suitable. Photothermal sterilization is ideal for point-of-use (POU) systems, as it effectively eliminates pathogens without secondary pollution or bacterial resistance issues. By combining photothermal with membrane treatment, these membranes rapidly heat up under near-infrared (NIR) light, enabling both bacterial retention and sterilization.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!