Tubuliform silk glands were dissected from Nephila clavipes spiders, and silk gut fibers were produced by immersing the glands in a mild acid solution and subsequent stretching. The tensile properties of the as produced fibers were obtained through tensile tests, and the stress-strain curves were compared with those of naturally spun tubuliform silk fibers. The influence on the mechanical properties of the fibers after immersion in water and drying was also discerned. The microstructure of the silk guts was obtained by X-ray diffraction (XRD) and infrared spectroscopy (FTIR). It was found that the stress-strain curves of the stretched tubuliform silk guts concur with those of their natural counterparts (tubuliform silk fibers).

Download full-text PDF

Source
http://dx.doi.org/10.1039/c9sm00212jDOI Listing

Publication Analysis

Top Keywords

tubuliform silk
20
nephila clavipes
8
silk gut
8
stress-strain curves
8
silk fibers
8
silk guts
8
silk
7
tubuliform
5
fibers
5
preparation characterization
4

Similar Publications

Characterization of the second type of tubuliform spidroin (TuSp1 variant 2) elucidates the essential role of cysteine within the repetitive domain in liquid-liquid phase separation-mediated silk formation and the mechanical properties of silk fibers.

Int J Biol Macromol

January 2025

Department of Ophthalmology, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, Zhejiang 324000, China; Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325000, China. Electronic address:

Orb-weaver spiders utilize morphologically differentiated abdominal glands to produce up to seven types of silks throughout their life cycles. Tubuliform silk is unique as it serves to protect developing embryos and hatchlings. However, our current understanding of the relationship between structure and function of tubuliform silk protein remains limited.

View Article and Find Full Text PDF

Exploring the Unique Properties and Superior Schwann Cell Guiding Abilities of Spider Egg Sac Silk.

ACS Appl Bio Mater

January 2025

Institute of Physics and Materials Science, Department of Natural Sciences and Sustainable Ressources, BOKU University, Peter Jordan-Straß 82, 1190 Vienna, Austria.

Spider silk (SPSI) is a promising candidate for use as a filler material in nerve guidance conduits (NGCs), facilitating peripheral nerve regeneration by providing a scaffold for Schwann cells (SCs) and axonal growth. However, the specific properties of SPSI that contribute to its regenerative success remain unclear. In this study, the egg sac silk of is investigated, which contains two distinct fiber types: tubuliform (TU) and major ampullate (MA) silk.

View Article and Find Full Text PDF

H, N and C resonance assignments of eggcase silk protein 3.

Biomol NMR Assign

December 2024

School of Life Sciences, Tianjin University, Tianjin, 300072, P.R. China.

Spider silk is a high-performance biomaterial known for its outstanding combination of strength and flexibility. Among the six distinct types of spider silk, eggcase silk stands out as it is exclusively produced from the tubuliform gland, playing a specialized role in offspring protection. In the spider species Latrodectus hesperus, eggcase silk is spun from a large spidroin complex, including the major silk component tubuliform spidroin 1 (TuSp1) and at least six different minor silk components.

View Article and Find Full Text PDF

Due to the unique properties of the silk fibroin (SF) made from silkworm, SF-based hydrogels have recently received significant attention for various biomedical applications. However, research on the SF-based hydrogels isolated from spider silks has been rtricted due to the limited collection and preparation of naïve silk materials. Therefore, this study focused on the microstructural characteristics of hydrogel scaffolds derived from two types of woven silk glands: the major ampullate gland (MAG) and the tubuliform gland (TG), in the orb-web spider Trichonephila clavate.

View Article and Find Full Text PDF

In order to produce artificial silk fibers with properties that match the native spider silk we likely need to closely mimic the spinning process as well as fiber architecture and composition. To increase our understanding of the structure and function of the different silk glands of the orb weaver Larinioides sclopetarius, we used resin sections for detailed morphology, paraffin embedded sections for a variety of different histological stainings, and a histochemical method for localization of carbonic anhydrase activity. Our results show that all silk glands, except the tubuliform glands, are composed of two or more columnar epithelial cell types, some of which have not been described previously.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!