Hybrid Charge-Transfer Semiconductors: (CH)SbI, (CH)BiI, and Their Halide Congeners.

Inorg Chem

Department of Chemistry , Colorado State University, Fort Collins , Colorado 80523-1872 , United States.

Published: May 2019

Hybrid metal halides yield highly desirable optoelectronic properties and offer significant opportunity due to their solution processability. This contribution reports a new series of hybrid semiconductors, (CH)MX (M = Bi, Sb; X = Cl, Br, I), that are composed of edge-sharing MX chains separated in space by π-stacked tropylium (CH) cations; the inorganic chains resemble the connectivity of BiI. The Bi compounds have blue-shifted optical absorptions relative to the Sb compounds that span the visible and near-IR region. Consistent with observations, DFT calculations reveal that the conduction band is composed of the tropylium cation and valence band primarily the inorganic chain: a charge-transfer semiconductor. The band gaps for both Bi and Sb compounds decrease systematically as a function of increasing halide size. These compounds are a rare example of charge-transfer semiconductors that also exhibit efficient crystal packing of the organic cations, thus providing an opportunity to study how structural packing affects optoelectronic properties.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.inorgchem.9b00170DOI Listing

Publication Analysis

Top Keywords

charge-transfer semiconductors
8
optoelectronic properties
8
hybrid charge-transfer
4
semiconductors chsbi
4
chsbi chbii
4
chbii halide
4
halide congeners
4
congeners hybrid
4
hybrid metal
4
metal halides
4

Similar Publications

Optoelectronic devices combining single-layer graphene (SLG) and colloidal semiconducting nanocrystal (NC) heterojunctions have recently gained significant attention as efficient hybrid photodetectors. While most research has concentrated on systems using heavy metal-based semiconductor NCs, there is a need for further exploration of environmentally friendly nanomaterials, such as CuS. Chemical ligands play a crucial role in these hybrid photodetectors, as they enable charge transfer between the NCs and SLG.

View Article and Find Full Text PDF

Image-guided photodynamic therapy is acknowledged as one of the most demonstrative therapeutic modalities for cancer treatment because of its high precision, non-invasiveness, and improved imaging ability. A series of purely organic photosensitizers denoted as BTMCz, BTMPTZ, and BTMPXZ, have been designed and synthesized and are found to exhibit both thermally activated delayed fluorescence and aggregation-induced emission simultaneously. Experimental and theoretical studies are combined to reveal that modulation of the donor of the photosensitizer enables distinct thermally activated delayed fluorescence via a second-order spin-orbit perturbation mechanism involving lowest singlet charge-transfer and higher-lying triplet locally excited states, respectively.

View Article and Find Full Text PDF

Research on manipulating materials using light has garnered significant interest, yet examples of controlling electronic polarization in magnetic materials remain scarce. Here, the hysteresis of electronic polarization in the anti-ferromagnetic semiconductor FePS is demonstrated via light. Below the Néel temperature, linear dichroism (i.

View Article and Find Full Text PDF

Due to high binding energy and extremely short diffusion distance of Frenkel excitons in common organic semiconductors at early stage, mechanism of interface charge transfer-mediated free carrier generation has dominated the development of bulk heterojunction (BHJ) organic solar cells (OSCs). However, considering the advancements in materials and device performance, it is necessary to reexamine the photoelectric conversion in current-stage efficient OSCs. Here, we propose that the conjugated materials with specific three-dimensional donor-acceptor conjugated packing potentially exhibit distinctive charge photogeneration mechanism, which spontaneously split Wannier-Mott excitons to free carriers in pure phases.

View Article and Find Full Text PDF

As a key means to solve energy and environmental problems, photocatalytic technology has made remarkable progress in recent years. Organic semiconductor materials offer structural diversity and tunable energy levels and thus attracted great attention. Among them, porphyrin and its derivatives show great potential in photocatalytic reactions and light therapy due to their unique large-π conjugation structure, high apparent quantum efficiency, tailorable functionality, and excellent biocompatibility.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!