Label-Free Optical Detection of Multiple Biomarkers in Sweat, Plasma, Urine, and Saliva.

ACS Sens

Nanoelectronics Laboratory , University of Cincinnati, Cincinnati , Ohio 45221-0030 , United States of America.

Published: May 2019

We report a novel label-free quantitative detection of human performance "stress" biomarkers in different body fluids based on optical absorbance of the biomarkers in the ultraviolet (UV) region. Stress biomarker (hormones and neurotransmitters) concentrations in bodily fluids (blood, sweat, urine, saliva) predict the physical and mental state of the individual. The stress biomarkers primarily focused on in this manuscript are cortisol, serotonin, dopamine, norepinephrine, and neuropeptide Y. UV spectroscopy of stress biomarkers performed in the 190-400 nm range has revealed primary and secondary absorption peaks at near-UV wavelengths depending on their molecular structure. UV characterization of individual and multiple biomarkers is reported in various biofluids. A microfluidic/optoelectronic platform for biomarker detection is reported, with a prime focus toward cortisol evaluation. The current limit of detection of cortisol in sweat is ∼200 ng/mL (∼0.5 μM), which is in the normal (healthy) range. Plasma samples containing both serotonin and cortisol resulted in readily detectable absorption peaks at 203 (serotonin) and 247 (cortisol) nm, confirming feasibility of simultaneous detection of multiple biomarkers in biofluid samples. UV spectroscopy performed on various stress biomarkers shows a similar increasing absorption trend with concentration. The detection mechanism is label free, applicable to a variety of biomarker types, and able to detect multiple biomarkers simultaneously in various biofluids. A microfluidic flow cell has been fabricated on a polymer substrate to enable point-of-use/care UV measurement of target biomarkers. The overall sensor combines sample dispensing and fluid transport to the detection location with optical absorption measurements with a UV light emitting diode (LED) and photodiode. The biomarker concentration is indicated as a function of photocurrent generated at the target wavelength.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acssensors.9b00301DOI Listing

Publication Analysis

Top Keywords

multiple biomarkers
16
stress biomarkers
12
biomarkers
10
detection multiple
8
urine saliva
8
absorption peaks
8
detection
7
cortisol
5
label-free optical
4
optical detection
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!