Context: The use of antioxidants immediately after bleaching showed increased bond strength.

Aims: This study aimed to compare the effects of natural antioxidants on the shear bond strength of composite resin to bleached enamel.

Materials And Methods: Fifty extracted single-rooted upper incisors were decoronated by sectioning the roots 2 mm below the cementoenamel junction, and then, crowns were embedded in autopolymerizing acrylic resin block (3.0 cm × 3.0 cm × 3.0 cm) with the labial surface exposed. They were randomly divided into five groups, depending on the type of antioxidant used (n = 10): (i) Group 1: control (no bleaching), (ii) Group 2: bleaching only, (iii) Group 3: bleaching + 10% sodium ascorbate (antioxidant), (iv) Group 4: bleaching + green tea, and (v) Group 5: bleaching + white tea. Labial surfaces of 40 teeth were bleached with 38% hydrogen peroxide for 20 min following manufacturer's instructions. After that, the experimental groups (Groups 3, 4, and 5) were treated with respective antioxidant solutions before composite restorations were done using a cylindrical plastic mold (3 mm × 5 mm). Shear bond strength of the specimens was tested under universal testing machine.

Statistical Analysis: Data were analyzed with ANOVA and Tukey's post hoc test.

Results: There were statistically significant differences between shear bond strength of control groups (Groups 1 and 2) and experimental groups (P < 0.05), but no significant difference in bond strength was observed among the antioxidants used.

Conclusion: Application of antioxidants immediately after bleaching showed increased bond strength. Green tea and white tea extract can be used as alternative antioxidants in improving the bond strength of enamel.

Download full-text PDF

Source
http://dx.doi.org/10.4103/ijdr.IJDR_397_17DOI Listing

Publication Analysis

Top Keywords

bond strength
28
shear bond
16
group bleaching
16
effects natural
8
natural antioxidants
8
antioxidants shear
8
bond
8
strength composite
8
composite resin
8
resin bleached
8

Similar Publications

The poly(vinylidene fluoride) (PVDF) has been deemed as an appealing matrix for solid polymer electrolytes due to its wide electrochemical window and excellent thermal stability. Further incorporation with garnet filler endows PVDF-based electrolyte with increased ionic conductivity and mechanical strength. However, the spontaneous formation of alkaline layer containing LiOH/LiCO on garnet surface cannot be neglected, concerning its low ionic conductivity combined with the destructive effect on electrochemical performance of PVDF-based composite electrolytes.

View Article and Find Full Text PDF

Rapid and reversible sodium-ion cathode materials for NASICON NaMnTiPBO achieved through Boron-substitution.

J Colloid Interface Sci

December 2024

School of Materials Science and Engineering, State Key Lab of Silicon and Advanced, Semiconductor Materials, Zhejiang University, Hangzhou 310027, PR China. Electronic address:

NaMnTi(PO) is a promising sodium-ion cathode material due to its relatively high specific capacity, excellent thermodynamic stability and low cost. However, unfavorable electron conductivity and slow kinetics limit its practical application. Here, a strategy of hetero and multivalent anion substitution is proposed to achieve high-rate performance and good capacity retention.

View Article and Find Full Text PDF

Purpose: This study aimed to investigate the effect of chlorhexidine (CHX) cavity disinfectant on interfacial microleakage and micro-tensile bond strength (μTBS) of a universal adhesive bonded to dentin in both self-etch (SE) and etch-and-rinse (ER) modes.

Methods: Class I cavities were prepared in the coronal dentin of extracted human teeth and assigned to two etching modes (SE or ER), then subdivided by disinfection with or without CHX (n = 5). Cavities were restored using Single Bond Universal Adhesive and Filtek Z350 XT composite.

View Article and Find Full Text PDF

The treatment and resource utilization of municipal sludge and dredged silt have been rendered urgent by the acceleration of urbanization and stricter environmental protection demands. An effective solution was developed to address the challenges of poor mechanical properties and the difficulty in directly using cement-based materials for municipal sludge treatment. The utilization of dredged silt with high water content served as the foundational skeleton material.

View Article and Find Full Text PDF

Gel electrolytes have emerged as a promising solution for enhancing the performance of zinc-ion batteries (ZIBs), particularly in flexible devices. However, they face challenges such as low-temperature inefficiency, constrained ionic conductivity, and poor mechanical strength. To address these issues, this study presents a novel PAMCD gel electrolyte with tunable freezing point and mechanical properties for ZIBs, blending the high ionic conductivity of polyacrylamide with the anion interaction capability of β-cyclodextrin.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!