Biodiversity influences ecosystem function, but there is limited understanding of the mechanisms that support this relationship across different land use types in mosaic agroecosystems. Network approaches can help to understand how community structure influences ecosystem function across landscapes; however, in ecology, network analyses have largely focused on species-species interactions. Here, we use bipartite network analysis in a novel way: to link pollinator communities to sites in a tropical agricultural landscape. We used sentinel plants of Brassica rapa to examine how the structure of the community network influences plant reproduction. Diptera was the most common order of flower visitors at every site. Syrphidae visits were the strongest contributor to the number of fertilized pods, while visits by Syrphidae, Hymenoptera and Lepidoptera had the strongest effect on the number of seeds per pod. Sentinel pots at forest sites were visited by more unique species (i.e. species with higher d') than sites in other land uses, and dairy sites had more visitors that were common across the network. Participation coefficients, which indicate how connected a single node is across network modules, were strong predictors of ecosystem function: plant reproduction increased at sites with higher participation coefficients. Flower visitor taxa with higher participation coefficients also had the strongest effect on plant reproduction. Hymenoptera visits were the best predictor for participation coefficients but an Allograpta sp. (Diptera: Syrphidae) was the most influential flower visitor species in the landscape network. A diverse insect community contributed to plant reproduction and connection among nodes in this system. Identifying the 'keystone' flower visitor species and sites that have a strong influence on network structure is a significant step forward to inform conservation priorities and decision-making in diverse agroecosystems.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6452072 | PMC |
http://dx.doi.org/10.1098/rspb.2019.0296 | DOI Listing |
Viruses
December 2024
Scientific Research Institute for Biological Safety Problems, Ministry of Health of Kazakhstan, Almaty 080409, Kazakhstan.
The global burden of COVID-19 continues to rise, and despite significant progress in vaccine development, there remains a critical need for effective treatments for the severe inflammation and acute lung injury associated with SARS-CoV-2 infection. In this study, we explored the antiviral properties of a plant-derived complex consisting of flavonol and hydroxyorganic acid compounds. Our research focused on the ability of the flavonol and hydroxyorganic acid complex to suppress the activity of several key proteins involved in the replication and maturation of SARS-CoV-2.
View Article and Find Full Text PDFPlants (Basel)
January 2025
Department of Applied Biological Science, Faculty of Agriculture, Kagawa University, Miki, Kita 761-0795, Kagawa, Japan.
Kunth is native to tropical America and has invaded tropical and subtropical Asia and numerous Pacific Islands. It forms dense thickets and reduces native species diversity and populations in its introduced range. This invasive vine also seriously impacts many agricultural crops and is listed as one of the world's 100 worst invasive alien species.
View Article and Find Full Text PDFPlants (Basel)
January 2025
Laboratory of Cell Biosystems, Institute of Microbiology, Bulgarian Academy of Sciences, 139 Ruski Blvd., 4000 Plovdiv, Bulgaria.
This study presents a comprehensive phyto- and histochemical analysis of three species: L., the Balkan endemic Guss., and the Bulgarian endemic Delip.
View Article and Find Full Text PDFNutrients
January 2025
Department of Anatomy, Faculty of Medical Science, Naresuan University, Phitsanulok 65000, Thailand.
High-fat diet (HFD)-induced obesity represents a significant challenge to male reproductive health, affecting approximately 13% of the global adult population. This comprehensive review synthesizes current evidence regarding mulberry ( L.) fruit extract's therapeutic potential for HFD-induced male reproductive dysfunction.
View Article and Find Full Text PDFInsects
January 2025
Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China.
has long been recognized as an important spider mite pest of rubber trees. Recently, increasing damage from has elevated its importance as a key spider mite pest. These two species share highly overlapping ecological niches, with outbreaks strongly associated with high temperatures and drought stresses.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!