A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Improving the Open Circuit Voltage through Surface Oxygen Plasma Treatment and 11.7% Efficient CuZnSnSe Solar Cell. | LitMetric

The photovoltaic performance of CuZnSnSe (CZTSe) solar cells subjected to surface oxygen plasma treatments is investigated. The observed improvements are related to an enhancement of the open circuit voltage V, that is, the suppression of the V deficit. The V monotonically increases with treatment time up to 0.460 V. The origin of this improvement is discussed, and it is concluded that the effectiveness of the surface treatment is not due to oxygen-related alloying but instead to the homogeneous oxidation and removal of the oxidized CZTSe surface layer. The surface oxygen content increases with surface treatment time, although surface oxides are fully removed after ammonia treatment, which is conducted in a similar manner to CdS buffer deposition. The reduction of surface recombination is confirmed by time-resolved photoluminescence measurements, and the minority carrier lifetime deduced using the fast decay component increases with increasing treatment time. The relationship between photovoltaic properties and lifetime is clearly demonstrated. The best-performing CZTSe solar cell obtained using surface oxygen treatment demonstrates a conversion efficiency of 11.7%, which is higher than those of previous reports on CZTSe cells.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.9b01756DOI Listing

Publication Analysis

Top Keywords

surface oxygen
16
treatment time
12
surface
9
open circuit
8
circuit voltage
8
oxygen plasma
8
solar cell
8
cztse solar
8
surface treatment
8
treatment
7

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!