Cytoskeleton disruption affects Kv2.1 channel function and its modulation by PIP.

J Physiol Sci

Departamento de Fisiología y Biofísica, Facultad de Medicina, Universidad Autónoma de San Luis Potosí, Venustiano Carranza #2405, Col. Los Filtros, 78210, San Luis Potosí, SLP, Mexico.

Published: May 2019

Voltage-gated potassium channels are expressed in a wide variety of excitable and non-excitable cells and regulate numerous cellular functions. The activity of ion channels can be modulated by direct interaction or/and functional coupling with other proteins including auxiliary subunits, scaffold proteins and the cytoskeleton. Here, we evaluated the influence of the actin-based cytoskeleton on the Kv2.1 channel using pharmacological and electrophysiological methods. We found that disruption of the actin-based cytoskeleton by latrunculin B resulted in the regulation of the Kv2.1 inactivation mechanism; it shifted the voltage of half-maximal inactivation toward negative potentials by approximately 15 mV, accelerated the rate of closed-state inactivation, and delayed the recovery rate from inactivation. The actin cytoskeleton stabilizing agent phalloidin prevented the hyperpolarizing shift in the half-maximal inactivation potential when co-applied with latrunculin B. Additionally, PIP depletion (a strategy that regulates Kv2.1 inactivation) after cytoskeleton disruption does not regulate further the inactivation of Kv2.1, which suggests that both factors could be regulating the Kv2.1 channel by a common mechanism. In summary, our results suggest a role for the actin-based cytoskeleton in regulating Kv2.1 channels.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10717730PMC
http://dx.doi.org/10.1007/s12576-019-00671-yDOI Listing

Publication Analysis

Top Keywords

kv21 channel
12
actin-based cytoskeleton
12
cytoskeleton disruption
8
kv21 inactivation
8
half-maximal inactivation
8
regulating kv21
8
cytoskeleton
7
kv21
7
inactivation
7
disruption kv21
4

Similar Publications

Kv2 channels do not function as canonical delayed rectifiers in spinal motoneurons.

iScience

August 2024

Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK.

The increased muscular force output required for some behaviors is achieved via amplification of motoneuron output via cholinergic C-bouton synapses. Work in neonatal mouse motoneurons suggested that modulation of currents mediated by post-synaptically clustered K2.1 channels is crucial to C-bouton amplification.

View Article and Find Full Text PDF
Article Synopsis
  • - Voltage-gated ion channels are crucial for maintaining membrane potential and regulating electrical signals in neurons, with voltage-gated potassium channels (K) being particularly important for neuronal excitability.
  • - High levels of reactive oxygen species (ROS) in the aging brain can impact K channels, contributing to aging and neurodegeneration, especially in conditions like Alzheimer's, Parkinson's, and Huntington's diseases.
  • - The review highlights specific K channels affected in these disorders (K1, K2.1, K3, K4, K7) and suggests that modulators of these channels may serve as potential therapeutic targets to prevent or treat neurodegenerative diseases.
View Article and Find Full Text PDF

Altered neurological and neurobehavioral phenotypes in a mouse model of the recurrent KCNB1-p.R306C voltage-sensor variant.

Neurobiol Dis

May 2024

Department of Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; Northwestern University Interdepartmental Neuroscience Program, Northwestern University, Chicago, IL 60611, USA. Electronic address:

Pathogenic variants in KCNB1 are associated with a neurodevelopmental disorder spectrum that includes global developmental delays, cognitive impairment, abnormal electroencephalogram (EEG) patterns, and epilepsy with variable age of onset and severity. Additionally, there are prominent behavioral disturbances, including hyperactivity, aggression, and features of autism spectrum disorder. The most frequently identified recurrent variant is KCNB1-p.

View Article and Find Full Text PDF

The function of the smooth muscle cells lining the walls of mammalian systemic arteries and arterioles is to regulate the diameter of the vessels to control blood flow and blood pressure. Here, we describe an in silico model, which we call the 'Hernandez-Hernandez model', of electrical and Ca signaling in arterial myocytes based on new experimental data indicating sex-specific differences in male and female arterial myocytes from murine resistance arteries. The model suggests the fundamental ionic mechanisms underlying membrane potential and intracellular Ca signaling during the development of myogenic tone in arterial blood vessels.

View Article and Find Full Text PDF
Article Synopsis
  • Voltage-gated Ca1.2 and K2.1 channels in arterial myocytes are essential for muscle contraction and relaxation; K2.1 also enhances Ca1.2 clustering specifically in females.
  • Research shows that K2.1 can form small micro-clusters that grow into larger macro-clusters when a specific site (S590) is phosphorylated, with females exhibiting higher phosphorylation and clustering than males.
  • Disruption of K2.1's clustering ability affects Ca1.2 cluster size and activity, suggesting that K2.1 clustering plays a crucial, sex-specific role in regulating Ca1.2 function in arterial myocytes.*
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!