AI Article Synopsis

  • Flood events worldwide are harming soil health, leading to food security issues, and this study examines their effects on heavy metals and nutrients in soil at three sites in Punjab, Pakistan.
  • The research found that flooding altered the concentrations of certain heavy metals like Cadmium and lead, while nutrients like phosphorous and nitrates decreased after flood events, suggesting that flooding changes soil composition.
  • The study highlights that despite low contamination levels currently, regular floods could escalate pollution and jeopardize agricultural productivity in the affected areas.

Article Abstract

Flood events around the globe have severely impaired the soil functioning resulting in compromised food security in several parts of the world. The current study was aimed to explore the impacts of floods on soil heavy metals and nutrients status at three locations; Tibbi Solgi (TS), Vinri Khosa (VK), and Noshehra West (NW-control) in the district Rajanpur of Punjab, Pakistan. TS and VK sites were under regular influence of flooding over the last many years, but no flood event was reported on NW site during the same tenure; hence, it served as control. Sampling was carried out before and after flooding on the experimental sites. Vegetation cover was monitored through remote sensing techniques. Results revealed varying effects of floods on soil heavy metals; Cd, Cr, Pb, and soil phosphorous and nitrates. Flood events increased the Cd while lowered Pb concentration at VK site; however, flooding did not influence the status of Cr in soil. Similar to the trend observed in case of Cd, soil phosphorous and nitrates were reduced after flood events. Correlation analyses of soil physicochemical properties with soil heavy metals and nutrients indicated that after flood events, soil texture and organic carbon content seem to be the major factors driving the shift in soil heavy metals and nutrient concentrations. Although pollution indices indicated a marginally low contamination levels, but as projected in empirical studies, regular flood events in the studied sites may contaminate the whole ecosystem rendering it unfit for agricultural productivity.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10661-019-7371-xDOI Listing

Publication Analysis

Top Keywords

soil heavy
20
flood events
20
heavy metals
16
soil
11
floods soil
8
metals nutrients
8
soil phosphorous
8
phosphorous nitrates
8
flood
6
heavy
5

Similar Publications

Proteomic Profile of in Response to Heavy Metal Pollution in Lakes of Northern Patagonia.

Int J Mol Sci

January 2025

Department of Chemical Engineering, Faculty of Engineering and Science, Universidad de La Frontera, Avenida Francisco Salazar, 01145, P.O. Box 54-D, Temuco 4811230, Chile.

Over recent decades, Northern Patagonia in Chile has seen significant growth in agriculture, livestock, forestry, and aquaculture, disrupting lake ecosystems and threatening native species. These environmental changes offer a chance to explore how anthropization impacts zooplankton communities from a molecular-ecological perspective. This study assessed the anthropogenic impact on by comparing its proteomes from two lakes: Llanquihue (anthropized) and Icalma (oligotrophic).

View Article and Find Full Text PDF

Houtt. Transformed Hairy Root Cultures as an Effective Platform for Producing Phenolic Compounds with Strong Bactericidal Properties.

Int J Mol Sci

January 2025

Department of Botany, Physiology and Plant Protection, Faculty of Biotechnology and Horticulture, University of Agriculture in Kraków, 29 Listopada 54, 31-425 Kraków, Poland.

Houtt. is the source of various phenolic compounds: phenolic acids, flawan-3-ols, and stilbenes, with a broad range of biological activity. The rhizome (underground organ of these plants) is abundant in secondary metabolites but, in natural conditions, may accumulate various toxic substances (such as heavy metals) from the soil.

View Article and Find Full Text PDF

Improving Ni Tolerance of Arabidopsis by Overexpressing Bacterial Gene Encoding a Membrane-Bound Exporter of Ni.

Int J Mol Sci

December 2024

Co-Innovation Center for Sustainable Forestry in Southern China, College of Life Sciences, Nanjing Forestry University, Nanjing 210037, China.

The prerequisite for breeding a plant to be used in phytoremediation is its high tolerance to grow normally in soil contaminated by certain heavy metals. As mechanisms of plant uptake and transport of nickel (Ni) are not fully understood, it is of significance to utilize exogenous genes for improving plant Ni tolerance. In this study, from encoding an exporter of Ni and cobalt was overexpressed constitutively in , and the performance of transgenic plants was assayed under Ni stress.

View Article and Find Full Text PDF

The black garden ant () is a widely distributed species across Europe, North America, and North Africa, playing a pivotal role in ecological processes within its diverse habitats. However, the microbiome associated with remains poorly investigated. In the present study, we isolated a novel species, , from the soil of the anthill.

View Article and Find Full Text PDF

(), a significant ornamental plant species, is adversely affected by the severe soil heavy metal pollution resulting from rapid industrialization, particularly in terms of its growth environment. Cadmium (Cd), a representative heavy metal pollutant, poses a significant threat to plant growth and photosynthetic physiology. Despite the importance of understanding Cd stress resistance in rhododendrons, research in this area is limited.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!