The electronic medical record (EMR) presents an opportunity to standardize patient data collection based on quality guidelines and conduct practice-based research. We describe the development of a customized EMR "toolkit" that standardizes patient data collection with hundreds of discrete fields that supports Best Practices for treating patients with memory disorders. The toolkit also supports practice-based research. We describe the design and successful implementation of a customized EMR toolkit to support Best Practices in the care of patients with memory disorders. We discuss applications, including quality improvement projects and current research initiatives, using the toolkit. This toolkit is being shared with other departments of Neurology as part of the Neurology Practice-Based Research Network. Data collection is ongoing, including longitudinal follow-up. This toolkit will generate data that will allow for descriptive and hypothesis driven research as well-quality improvement among patients seen in a memory clinic.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6416163PMC
http://dx.doi.org/10.3389/fneur.2019.00161DOI Listing

Publication Analysis

Top Keywords

memory disorders
12
data collection
12
patients memory
12
patient data
8
practice-based describe
8
customized emr
8
best practices
8
toolkit
5
building emr
4
emr tools
4

Similar Publications

Post-traumatic stress and major depressive disorders are associated with "overgeneral" autobiographical memory, or impaired recall of specific life events. Interpersonal trauma exposure, a risk factor for both conditions, may influence how symptomatic trauma-exposed (TE) individuals segment everyday events. The ability to parse experience into units (event segmentation) supports memory.

View Article and Find Full Text PDF

Multivariate patterns among multimodal neuroimaging and clinical, cognitive, and daily functioning characteristics in bipolar disorder.

Neuropsychopharmacology

January 2025

Neurocognition and Emotion in Affective Disorders (NEAD) Centre, Psychiatric Centre Copenhagen, Mental Health Services, Capital Region of Denmark, Frederiksberg, Denmark.

Individuals with bipolar disorder (BD) show heterogeneity in clinical, cognitive, and daily functioning characteristics, which challenges accurate diagnostics and optimal treatment. A key goal is to identify brain-based biomarkers that inform patient stratification and serve as treatment targets. The objective of the present study was to apply a data-driven, multivariate approach to quantify the relationship between multimodal imaging features and behavioral phenotypes in BD.

View Article and Find Full Text PDF

Memory reconsolidation interventions offer an exciting alternative to exposure treatment because they may target fear memories directly, thereby preventing relapse. A previous reconsolidation intervention for spider fear abruptly reduced avoidance behaviour, whereas changes in self-reported fear followed later. In this pre-registered placebo-controlled study, we first aimed to conceptually replicate these effects in spider phobia.

View Article and Find Full Text PDF

MO-GCN: A multi-omics graph convolutional network for discriminative analysis of schizophrenia.

Brain Res Bull

January 2025

School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou 511442, China; Guangdong Province Key Laboratory of Biomedical Engineering, South China University of Technology, Guangzhou 510006, China; Department of Nuclear Medicine and Radiology, Institute of Development, Aging and Cancer, Tohoku University, Sendai 980-8575, Japan. Electronic address:

The methodology of machine learning with multi-omics data has been widely adopted in the discriminative analyses of schizophrenia, but most of these studies ignored the cooperative interactions and topological attributes of multi-omics networks. In this study, we constructed three types of brain graphs (BGs), three types of gut graphs (GGs), and nine types of brain-gut combined graphs (BGCGs) for each individual. We proposed a novel methodology of multi-omics graph convolutional network (MO-GCN) with an attention mechanism to construct a classification model by integrating all BGCGs.

View Article and Find Full Text PDF

Many aspects of human performance require producing sequences of items in serial order. The current study takes a multiple-case approach to investigate whether the system responsible for serial order is shared across cognitive domains, focusing on working memory (WM) and word production. Serial order performance in three individuals with post-stroke language and verbal WM disorders (hereafter persons with aphasia, PWAs) were assessed using recognition and recall tasks for verbal and visuospatial WM, as well as error analyses in spoken and written production tasks to assess whether there was a tendency to produce the correct phonemes/letters in the wrong order.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!