Development of a Persistent Superconducting Joint between Bi-2212/Ag-alloy Multifilamentary Round Wires.

Supercond Sci Technol

Applied Superconductivity Center, National High Magnetic Field Laboratory, Florida State University, 2031 East Paul Dirac Drive, Tallahassee, FL 32310, USA.

Published: February 2017

Superconducting joints are one of the key components needed to make Ag-alloy clad BiSrCaCuO (Bi-2212) superconducting round wire (RW) successful for high-field, high-homogeneity magnet applications, especially for nuclear magnetic resonance (NMR) magnets in which persistent current mode (PCM) operation is highly desired. In this study, a procedure for fabricating superconducting joints between Bi-2212 round wires during coil reaction was developed. Melting temperatures of Bi-2212 powder with different amounts of Ag addition were investigated by differential thermal analysis (DTA) so as to provide information for selecting the proper joint matrix. Test joints of 1.3 mm dia. wires heat treated in 1 bar flowing oxygen using the typical partial melt Bi-2212 heat treatment (HT) had transport critical currents of ~900 A at 4.2 K and self-field, decreasing to ~480 A at 14 T evaluated at 0.1 μV/cm at 4.2 K. Compared to the of the open-ended short conductor samples with identical 1 bar HT, the values of the superconducting joint are ~20% smaller than that of conductor samples measured in parallel field but ~20% larger than conductor samples measured in perpendicular field. Microstructures examined by scanning electron microscopy (SEM) clearly showed the formation of a superconducting Bi-2212 interface between the two Bi-2212 round wires. Furthermore, a Bi-2212 RW closed-loop solenoid with a superconducting joint heat treated in 1 bar flowing oxygen showed an estimated joint resistance below 5×10 Ω based on its field decay rate. This value is sufficiently low to demonstrate the potential for persistent operation of large inductance Bi-2212 coils.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6424527PMC
http://dx.doi.org/10.1088/1361-6668/30/2/025020DOI Listing

Publication Analysis

Top Keywords

superconducting joint
12
round wires
12
conductor samples
12
superconducting joints
8
bi-2212
8
bi-2212 round
8
heat treated
8
treated bar
8
bar flowing
8
flowing oxygen
8

Similar Publications

High-entropy engineered BaTiO-based ceramic capacitors with greatly enhanced high-temperature energy storage performance.

Nat Commun

January 2025

State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing, China.

Ceramic capacitors with ultrahigh power density are crucial in modern electrical applications, especially under high-temperature conditions. However, the relatively low energy density limits their application scope and hinders device miniaturization and integration. In this work, we present a high-entropy BaTiO-based relaxor ceramic with outstanding energy storage properties, achieving a substantial recoverable energy density of 10.

View Article and Find Full Text PDF
Article Synopsis
  • Discovering the optoelectronic properties of transition metal dichalcogenides (TMDCs) is crucial for next-gen electronic devices, with a focus on the impact of external strains on Dirac states, an area still being explored.
  • A comprehensive database of 90 TMDC types was created, revealing that 27.3% exhibit Dirac materials with three distinct types of Dirac cones, influenced by external strain-induced electron localization.
  • The study shows that TMDCs from tellurides with 1H phase enhance the formation of Dirac cones under stress, leading to metallic properties and increased charge transport, ultimately offering insights for the development of TMDCs in superconducting and optoelectronic applications.
View Article and Find Full Text PDF

Intrinsic low conductivity, poor structural stability, and narrow interlayer spacing limit the development of MnO in sodium-ion (Na) supercapacitors. This work constructs the hollow cubic Mn-PBA precursor through an ion-exchange process to in situ obtain a hollow cubic H-Ni-MnO composite with Ni doping and oxygen vacancies (O) via a self-oxidation strategy. Experiments and theoretical calculations show that the hollow nanostructure and the expanding interlayer spacing induced by Ni doping are beneficial for exposing more reactive sites, synergistically manipulating the Na transport pathways.

View Article and Find Full Text PDF

Plastic damage of REBCO (REBaCuO, where RE=rare earth) coated conductors by screening current stress (SCS) is a significant concern for ultra-high-field superconducting magnets. Indeed, the third Little Big Coil (LBC3), a REBCO magnet that generated a record, high field of 45.5 T, showed wavy plastic damage produced by excess SCS in all pancakes except two made with single-slit conductors having their slit edges pointing inward towards the magnet center.

View Article and Find Full Text PDF
Article Synopsis
  • Designer heterostructures combining supramolecular metal complexes (SMCs) and the quasi-2D superconductor NbSe₂ were developed to create unique superconducting states through the interplay of magnetism and superconductivity.
  • Scanning tunneling microscopy revealed the formation of Yu-Shiba-Rusinov bands due to interactions between SMC magnetism and NbSe₂ superconductivity, while additional measurements indicated antiferromagnetic coupling among SMC units.
  • The resulting unconventional 3×3 magnetic reconstruction could lead to innovative quantum materials, advancing the research of unconventional superconductors and quantum spin liquids.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!