Objective: In this study, we aim to evaluate Toll-like receptor 2 (TLR2) expression in human glioma tumors and the correlation between its expression with degrees of malignancy and autophagy, development of tumors.

Method: Immunohistochemistry and Western blot were carried out to determine the expression of LC3, Beclin1 and TLR2 in 74 glioma specimens. We analyzed the prognosis of 551 glioma patients through the Cancer Genome Atlas (TCGA). To determine the effect of TLR2 in glioma, we manipulated TLR2 expression using TLR2 plasmid transfer technique in U87 human glioma cell.

Results: TLR2 expression in high-grade was significantly higher than that in low-grade glioma group (P < 0.05). TLR2 was positively correlated with tumor grade (P < 0.05). Spearman correlation showed that the expression of TLR2 was positively correlated with the numbers of LC3 and Beclin1 (P < 0.05). The patients with high TLR2 expression had a poorer outcome compared with the patients with low TLR2 in low-grade glioma (P < 0.05). TLR2 overexpression enhances glioma cell activity and accelerates cell cycle progression. In addition, treatment with TLR2 overexpression increases the conversion rate of LC3-I to LC3-II and enhances the level of phosphorylated p38.

Conclusion: TLR2 promotes development and progression of human glioma via enhancing autophagy.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.gene.2019.02.084DOI Listing

Publication Analysis

Top Keywords

human glioma
12
tlr2 expression
12
tlr2 glioma
8
tlr2
7
glioma
7
expression
5
tlr2 promotes
4
promotes development
4
development progression
4
progression human
4

Similar Publications

CYP3A5 promotes glioblastoma stemness and chemoresistance through fine-tuning NAD/NADH ratio.

J Exp Clin Cancer Res

January 2025

School of Medicine, Chinese PLA General Hospital, Nankai University, Beijing, China.

Background: Glioblastoma multiforme (GBM) exhibits a cellular hierarchy with a subpopulation of stem-like cells known as glioblastoma stem cells (GSCs) that drive tumor growth and contribute to treatment resistance. NAD(H) emerges as a crucial factor influencing GSC maintenance through its involvement in diverse biological processes, including mitochondrial fitness and DNA damage repair. However, how GSCs leverage metabolic adaptation to obtain survival advantage remains elusive.

View Article and Find Full Text PDF

In recent years, it has been increasingly recognized that tumor growth relies not only on support from the surrounding microenvironment but also on the tumors capacity to adapt to - and actively manipulate - its niche. While targeting angiogenesis and modulating the local immune environment have been explored as therapeutic approaches, these strategies have yet to yield effective treatments for brain tumors and remain under refinement. More recently, the nervous system itself has been explored as a critical environmental support for cancer, with extensive neuro-tumoral interactions observed both intracranially and in extracranial sites containing neural components.

View Article and Find Full Text PDF

Glioma is characterized by high heterogeneity and poor prognosis. Attempts have been made to understand its diversity in both genetic expressions and radiomic characteristics, while few integrated the two omics in predicting survival of glioma. This study was intended to investigate the connection between glioma imaging and genome, and examine its predictive value in glioma mortality risk and tumor immune microenvironment (TIME).

View Article and Find Full Text PDF

Gliomas are the most common brain tumor type in children and adolescents. To date, diagnosis and therapy monitoring for these tumors rely on magnetic resonance imaging (MRI) and histopathological as well as molecular analyses of tumor tissue. Recently, liquid biopsies (LB) have emerged as promising tool for diagnosis and longitudinal tumor assessment potentially allowing for a more precise therapeutic management.

View Article and Find Full Text PDF

Background: Minimally invasive molecular profiling using cell-free DNA (cfDNA) is increasingly important to the management of cancer patients; however, low sensitivity remains a major limitation, particularly for brain tumor patients. Transiently attenuating cfDNA clearance from the body-thereby, allowing more cfDNA to be sampled-has been proposed to improve the performance of liquid biopsy diagnostics. However, there is a paucity of clinical data on the effect of higher cfDNA recovery.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!