A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 143

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 143
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 209
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3098
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: Attempt to read property "Count" on bool

Filename: helpers/my_audit_helper.php

Line Number: 3100

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3100
Function: _error_handler

File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Plasmonic metaresonances: harnessing nonlocal effects for prospective biomedical applications. | LitMetric

Plasmonic metaresonances: harnessing nonlocal effects for prospective biomedical applications.

J Phys Condens Matter

Advanced Computing and Simulation Laboratory (AχL), Department of Electrical and Computer Systems Engineering, Monash University, Clayton, Victoria 3800, Australia.

Published: August 2019

AI Article Synopsis

  • - Metal nanoparticles (MNPs) can focus and enhance electromagnetic fields at very small scales, which influences the optical behavior of nearby luminescent semiconductor quantum dots (QDs), leading to exciting optical effects known as plasmonic metaresonances (PMRs).
  • - PMRs arise under specific conditions related to the dipole moment of the QDs, their distance from the MNPs, and the surrounding medium, which can significantly impact the behavior and efficiency of the QDs in the presence of MNPs.
  • - The study highlights limitations in existing theories regarding PMRs, especially the local response approximation (LRA), and proposes using generalized nonlocal optical response (GNOR) to provide more accurate predictions for

Article Abstract

Metal nanoparticles (MNPs) possess optical concentration capabilities that can amplify and localize electromagnetic fields into nanometer length scales. The near-fields of MNPs can be used to tailor optical response of luminescent semiconductor quantum dots (QDs), resulting in fascinating optical phenomena. Plasmonic metaresonances (PMRs) form a class of such optical events gaining increasing popularity due to their promising prospects in sensing and switching applications. Unlike the basic excitonic and plasmonic resonances in MNP-QD nanohybrids, PMRs occur in the space/time domain. A nanohybrid experiences PMR when system parameters such as QD dipole moment, MNP-QD centre separation or submerging medium permittivity reach critical values, resulting in the plasmonically induced time delay of the effective Rabi frequency experienced by the QD asymptotically tending to infinity. Theoretical analyses of PMRs available in the literature utilize the local response approximation (LRA) which does not account for the nonlocal effects of the MNP, and neglect the MNP dependence of the QD decay and dephasing rates which hinder their applicability to QDs in the close vicinity of small MNPs. Here, we address these limitations using an approach based on the generalized nonlocal optical response (GNOR) theory which has proven to yield successful theoretical explanations of experimentally observed plasmonic phenomena. Our results indicate that, omission of the MNP nonlocal response and the associated decay/dephasing rate modifications of the QD tend to raise implications such as significant over-estimation of the QD dipole moment required to achieve PMR, under-estimation of the critical centre separation and prediction of significantly lower near-PMR QD absorption rates, in comparison to the improved GNOR based predictions. In light of our observations, we finally suggest two prospective applications of PMR based nanoswitches, namely, aptamer based in vitro cancer screening and thermoresponsive polymer based temperature sensing. To demonstrate the latter application, we develop and utilize a proof of concept (two dimensional) skin tumor model homogeneously populated by MNP-QD nanohybrids. Our simulations reveal a novel near-PMR physical phenomenon observable under perpendicular illumination, which we like to call the margin pattern reversal, where the spatial absorption pattern reverses when the near-PMR QDs switch from the bright to dark state.

Download full-text PDF

Source
http://dx.doi.org/10.1088/1361-648X/ab1234DOI Listing

Publication Analysis

Top Keywords

plasmonic metaresonances
8
nonlocal effects
8
optical response
8
mnp-qd nanohybrids
8
dipole moment
8
centre separation
8
optical
5
based
5
plasmonic
4
metaresonances harnessing
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!

A PHP Error was encountered

Severity: Notice

Message: fwrite(): Write of 34 bytes failed with errno=28 No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 272

Backtrace:

A PHP Error was encountered

Severity: Warning

Message: session_write_close(): Failed to write session data using user defined save handler. (session.save_path: /var/lib/php/sessions)

Filename: Unknown

Line Number: 0

Backtrace: