Increasing evidence showed that Cadmium (Cd) can accumulate in the body and damage cells, resulting in cancerigenesis of the prostate with complex mechanisms. In the present study, we aimed to explore the possible key genes, pathways and therapeutic drugs using bioinformatics methods. Microarray-based data were retrieved and analyzed to screen differentially expressed genes (DEGs) between Cd-treated prostate cells and controls. Then, functions of the DEGs were annotated and hub genes were screened. Next, key genes were selected from the hub genes via validation in a prostate cancer cohort from The Cancer Genome Atlas (TCGA). Afterward, potential drugs were further predicted. Consequently, a gene expression profile, GSE9951, was retrieved. Then, 361 up-regulated and 30 down-regulated DEGs were screened out, which were enriched in various pathways. Among the DEGs, seven hub genes (HSPA5, HSP90AB1, RHOA, HSPD1, MAD2L1, SKP2, and CCT2) were dysregulated in prostate cancer compared to normal controls, and two of them (HSPD1 and CCT2) might influence the prostate cancer prognosis. Lastly, ionomycin was predicted to be a potential agent reversing Cd-induced prostate cell malignant transformation. In summary, the present study provided novel evidence regarding the mechanisms of Cd-induced prostate cell malignant transformation, and identified ionomycin as a potential small molecule against Cd toxicity.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.etap.2019.03.014 | DOI Listing |
PLoS One
January 2025
School of Environmental Engineering, Yellow River Conservancy Technical Institute, Kaifeng Key Laboratory of Food Composition and Quality Assessment, Kaifeng, China.
Antibiotic resistance is a critical global public health issue. The gut microbiome acts as a reservoir for numerous antibiotic resistance genes (ARGs), which influence both existing and future microbial populations within a community or ecosystem. However, the differences in ARG expression between fresh and composted feces remain poorly understood.
View Article and Find Full Text PDFPLoS Biol
January 2025
Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts, United States of America.
RNA interference (RNAi) mediates antiviral defense in many eukaryotes. Caenorhabditis elegans mutants that disable RNAi are more sensitive to viral infection. Many mutants that enhance RNAi have also been identified; these mutations may reveal genes that are normally down-regulated in antiviral defense.
View Article and Find Full Text PDFJ Vis Exp
January 2025
Institute of Biochemistry and Molecular Biology, Hengyang Medical School, University of South China; National Health Commission Key Laboratory of Birth Defect Research and Preventio, Hunan Provincial Maternal and Child Health Care Hospital;
Both DNA replication and RNA transcription utilize genomic DNA as their template, necessitating spatial and temporal separation of these processes. Conflicts between the replication and transcription machinery, termed transcription-replication conflicts (TRCs), pose a considerable risk to genome stability, a critical factor in cancer development. While several factors regulating these collisions have been identified, pinpointing primary causes remains difficult due to limited tools for direct visualization and clear interpretation.
View Article and Find Full Text PDFRice (N Y)
January 2025
College of Agronomy, Anhui Agricultural University, Hefei, 230000, China.
Panicle elongation length (PEL), which determines panicle exsertion, is an important outcrossing-related trait. Mining genes controlling PEL in rice (Oryza sativa L.) has great practical significance in breeding cytoplasmic male sterility (CMS) lines with increased PEL and simplified, high-efficiency seed production.
View Article and Find Full Text PDFMetab Brain Dis
January 2025
Key Laboratory of Longevity and Aging-Related Disease of Chinese Ministry of Education, Center for Translational Medicine, School of Basic Medical Sciences, Guangxi Medical University, Nanning, Guangxi, China.
2-dodecyl-6-methoxycyclohexa-2,5-diene-1,4-dione (DMDD) is a cyclohexanedione compound extracted from the roots of Averrhoa carambola L. Several studies have documented its beneficial effects on diabetes, Alzheimer's disease, and cancer. However, its potential neuroprotective effects on Parkinson's disease (PD) have not yet been explored.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!