Site-directed mutagenesis of β-1,4-endoglucanase from family 5 glycoside hydrolase (CtGH5) from Clostridium thermocellum was performed to develop a mutant CtGH5-F194A that gave 40 U/mg specific activity against carboxymethyl cellulose, resulting 2-fold higher activity than wild-type CtGH5. CtGH5-F194A was fused with a β-1,4-glucosidase, CtGH1 from Clostridium thermocellum to develop a chimeric enzyme. The chimera (CtGH1-L1-CtGH5-F194A) expressed as a soluble protein using E. coli BL-21cells displaying 3- to 5-fold higher catalytic efficiency for endoglucanase and β-glucosidase activities. TLC analysis of hydrolysed product of CMC by chimera 1 revealed glucose as final product confirming both β-1,4-endoglucanase and β-1,4-glucosidase activities, while the products of CtGH5-F194A were cellobiose and cello-oligosaccharides. Protein melting studies of CtGH5-F194A showed melting temperature (T), 68 °C and of CtGH1, 79 °C, whereas, chimera showed 78 °C. The improved structural integrity, thermostability and enhanced bi-functional enzyme activities of chimera makes it potentially useful for industrial application in converting biomass to glucose and thus bioethanol.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.biortech.2019.03.051 | DOI Listing |
Biotechnol J
January 2025
School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China.
Loop-mediated isothermal amplification (LAMP) is a detection method widely used in pathogen detection and clinical diagnosis. Nevertheless, it is highly constrained by thermal stability, catalytic activity, and resistance to inhibitors of Bst DNA polymerase. In this study, a novel DNA polymerase was characterized from Clostridium thermocellum, exhibiting potential in LAMP detection.
View Article and Find Full Text PDFBiotechnol Biofuels Bioprod
December 2024
Thayer School of Engineering, Dartmouth College, Hanover, NH, USA.
Background: Clostridium thermocellum is a promising candidate for production of cellulosic biofuels, however, its final product titer is too low for commercial application, and this may be due to thermodynamic limitations in glycolysis. Previous studies in this organism have revealed a metabolic bottleneck at the phosphofructokinase (PFK) reaction in glycolysis. In the wild-type organism, this reaction uses pyrophosphate (PP) as an energy cofactor, which is thermodynamically less favorable compared to reactions that use ATP as a cofactor.
View Article and Find Full Text PDFACS Synth Biol
November 2024
Thayer School of Engineering at Dartmouth College, Hanover, New Hampshire 03755, United States.
Genetic approaches have been traditionally used to understand microbial metabolism, but this process can be slow in nonmodel organisms due to limited genetic tools. An alternative approach is to study metabolism directly in the cell lysate. This avoids the need for genetic tools and is routinely used to study individual enzymatic reactions but is not generally used to study systems-level properties of metabolism.
View Article and Find Full Text PDFAppl Microbiol Biotechnol
October 2024
Biological Resources and Post-Harvest Division, Japan International Research Center for Agricultural Sciences (JIRCAS), 1-1 Ohwashi, Tsukuba, Ibaraki, 305-8686, Japan.
Herbivorax saccincola A7 is an anaerobic alkali-thermophilic lignocellulolytic bacterium that possesses a cellulosome and high xylan degradation ability. To understand the expression profile of extracellular enzymes by carbon sources, quantitative real-time PCR was performed on all cellulosomal and non-cellulosomal enzyme genes of H. saccincola A7 using cellulose and xylan as carbon sources.
View Article and Find Full Text PDFMetab Eng
November 2024
Department of Industrial Biotechnology, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Stockholm, Sweden. Electronic address:
Acetivibrio thermocellus (formerly Clostridium thermocellum) is a potential platform for lignocellulosic ethanol production. Its industrial application is hampered by low product titres, resulting from a low thermodynamic driving force of its central metabolism. It possesses both a functional ATP- and a functional PP-dependent 6-phosphofructokinase (PP-Pfk), of which only the latter is held responsible for the low driving force.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!