Bubbly flow velocity measurement in multiple scattering regime.

Ultrasonics

Aix-Marseille Univ, CNRS (UPR 7051), Centrale Marseille, LMA, 13402 Marseille, France.

Published: May 2019

We propose a technique to measure the velocity of a bubble cloud based on the coda correlation. The method is founded on successive recordings of multiple scattered waves from a bubble cloud. Our model predicts the dependence between the correlation coefficient of these coda waves and the velocity of the bubble cloud under diffusion approximation. The Acoustic experiments are validated by simultaneous optical measurements in a water tank, with a good agreement between the acoustical and the optical methods (relative difference smaller than 7%). This technique can be transposed to any particle flow velocity problems involving multiple scattering effects in acoustics.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ultras.2019.03.005DOI Listing

Publication Analysis

Top Keywords

bubble cloud
12
flow velocity
8
multiple scattering
8
velocity bubble
8
bubbly flow
4
velocity
4
velocity measurement
4
measurement multiple
4
scattering regime
4
regime propose
4

Similar Publications

Cavitation dynamics and thermodynamic effect of R134a refrigerant in a Venturi tube.

Ultrason Sonochem

January 2025

School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an 710049, China; MOE Key Laboratory of Cryogenic Technology and Equipment, Xi'an Jiaotong University, Xi'an 710049, China.

Cavitation plays a crucial role in the reliability of components in refrigeration systems. The properties of refrigerants change significantly with temperature, thereby amplifying the impact of thermodynamic effects. This study, based on the Large Eddy Simulation (LES) method and the Schnerr-Sauer (S-S) cavitation model, investigates the transient cavitating flow characteristics of the R134a refrigerant in a Venturi tube (VT).

View Article and Find Full Text PDF

Herein an extremely low (0.32‒0.25 WmK) and glassy temperature-dependence (300-600 K) of lattice thermal conductivity (κ) in a monoclinic KAgSe is reported.

View Article and Find Full Text PDF

Using space lidar to infer bubble cloud depth on a global scale.

Sci Rep

October 2024

Ocean Sciences Division, U.S. Naval Research Laboratory, NASA Stennis Space Center, John C. Stennis Space Center, MS, 39529, USA.

Visible and microwave satellite measurements can provide the global whitecap fraction. The bubble clouds are three-dimensional structures, and a space-based lidar can provide complementary observations of the bubble depth. Here, we use lidar measurements of the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) satellite to quantify global bubble depth from the depolarization.

View Article and Find Full Text PDF

Objective: Low-intensity histotripsy (LIH) is a novel and safe technique for tissue ablation. This study aimed to explore the effects of LIH on canine prostate tissue and identify the degree of acute injury to the gland.

Methods: We constructed and evaluated two types of acoustically responsive droplet (ARD) emulsions using either perfluoropentane (PFP) with a lipid shell or perfluoromethyl-cyclopentane (PFMCP) with lauromacrogol (L) injection.

View Article and Find Full Text PDF

Glioblastoma (GBM) is the most common and malignant type of primary brain tumor. Even after surgery and chemoradiotherapy, residual GBM cells can infiltrate the healthy brain parenchyma to form secondary tumors. To mitigate GBM recurrence, we recently developed an injectable hydrogel that can be crosslinked in the resection cavity to attract, collect, and ablate residual GBM cells.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!