Extracellular and intracellular tumor necrosis factor alpha modulates cytosolic and nuclear calcium in human cardiovascular cells .

Can J Physiol Pharmacol

Department of Anatomy and Cell Biology, Faculty of Medicine, University of Sherbrooke, Sherbrooke, QC J1H 5N4, Canada.

Published: September 2019

Tumor necrosis factor alpha (TNFα) and its type 1 receptor (TNFR1) are implicated in several autoimmune diseases, including rheumatoid arthritis, and are associated with complications at the cardiovascular level. Using human cardiomyocytes, vascular smooth muscle, vascular endothelial, and endocardial endothelial cells coupled to indirect immunofluorescence, our results showed the presence of TNFR1 at the levels of the plasma membrane (including the cytosol) and mostly at the level of the nuclear membranes (including the nucleoplasm). The distribution of the receptor is different between cell types; however, the density is significantly higher at the nuclear level in all 4 cell types. The density of the receptor was the highest in contractile cells including the cardiomyocytes and vascular smooth muscle cells, compared with endothelial cells including endocardial endothelial and vascular endothelial cells. Using the Ca probe Fluo-3 coupled to quantitative confocal microscopy, our results showed that the cytokine induced a sustained Ca increase in both the cytosol and nucleoplasm of all 4 cell types. This increase was more significant at the nuclear level, mainly in endothelial cells. Our results demonstrated the presence of TNFR1 at both the cell and nuclear membranes of cardiovascular cells, and that its activation modulated both cytosolic and nuclear Ca.

Download full-text PDF

Source
http://dx.doi.org/10.1139/cjpp-2019-0070DOI Listing

Publication Analysis

Top Keywords

endothelial cells
16
cell types
12
tumor necrosis
8
necrosis factor
8
factor alpha
8
cytosolic nuclear
8
cells
8
cardiovascular cells
8
cardiomyocytes vascular
8
vascular smooth
8

Similar Publications

Mycoplasma (Class: Mollicutes) contamination in cell cultures is a universal concern for research laboratories. Some estimates report contamination in up to 35% of continuous cell lines. Various commercial antibiotic treatments can successfully decontaminate clean cell lines ; however, decontamination of bacterial cultures remains challenging.

View Article and Find Full Text PDF

Next-generation cancer phenomics by deployment of multiple molecular endophenotypes coupled with high-throughput analyses of gene expression offer veritable opportunities for triangulation of discovery findings in non-small cell lung cancer (NSCLC) research. This study reports differentially expressed genes in NSCLC using publicly available datasets (GSE18842 and GSE229253), uncovering 130 common genes that may potentially represent crucial molecular signatures of NSCLC. Additionally, network analyses by GeneMANIA and STRING revealed significant coexpression and interaction patterns among these genes, with four notable hub genes-, , and -identified as pivotal in NSCLC progression.

View Article and Find Full Text PDF

Antagonisation of Prokineticin Receptor-2 Attenuates Preeclampsia Symptoms.

J Cell Mol Med

January 2025

Interdisciplinary Research Institute of Grenoble, IRIG-Biosanté, University Grenoble Alpes, INSERM, CEA, UMR 1292, Grenoble, France.

Preeclampsia (PE) is the most threatening pathology of human pregnancy. Placenta from PE patients releases harmful factors that contribute to the exacerbation of the disease. Among these factors is the prokineticin1 (PROK1) and its receptor, PROKR2 that we identified as a mediators of PE.

View Article and Find Full Text PDF

Endothelial STING-JAK1 interaction promotes tumor vasculature normalization and antitumor immunity.

J Clin Invest

January 2025

State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China.

Stimulator of interferon genes (STING) agonists have been developed and tested in clinical trials for their antitumor activity. However, the specific cell population(s) responsible for such STING activation-induced antitumor immunity have not been completely understood. In this study, we demonstrated that endothelial STING expression was critical for STING agonist-induced antitumor activity.

View Article and Find Full Text PDF

A 3D Model of the Human Lung Airway for Evaluating Permeability of Inhaled Drugs.

ACS Pharmacol Transl Sci

January 2025

Division of Applied Regulatory Science, Office of Clinical Pharmacology, Office of Translational Sciences, Center for Drug Evaluation and Research, United States Food and Drug Administration (FDA), Silver Spring, Maryland 20993, United States.

Current in vitro cell-based methods, relying on single cell types, have structural and functional limitations in determining lung drug permeability, which is a contributing factor affecting both local and systemic drug levels. To address this issue, we investigated a 3D human lung airway model generated using a cell culture insert, wherein primary human lung epithelial and endothelial cells were cocultured at an air-liquid interface (ALI). To ensure that the cell culture mimics the physiological and functional characteristics of airway tissue, the model was characterized by evaluating several parameters such as cellular confluency, ciliation, tight junctions, mucus-layer formation, transepithelial electrical resistance, and barrier function through assaying fluorescein isothiocyanate-dextran permeability.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!