Pulmonary arterial hypertension (PAH) pathogenesis shares similarities with carcinogenesis. One CD44 variant (CD44v) isoform, CD44v8-10, binds to and stabilizes the cystine transporter subunit (xCT), producing reduced glutathione and thereby enhancing the antioxidant defense of cancer stem cells. Pharmacological inhibition of xCT by sulfasalazine suppresses tumor growth, survival, and resistance to chemotherapy. We investigated whether the CD44v-xCT axis contributes to PAH pathogenesis. CD44v was predominantly expressed on endothelial-to-mesenchymal transition (EndMT)-like cells in the neointimal layer of PAH affected pulmonary arterioles. , CD44 standard form and CD44v were induced as a result of EndMT. Among human pulmonary artery endothelial cells that have undergone EndMT, CD44v cells showed high levels of xCT expression on their cell surfaces and high concentrations of glutathione for survival. This made CD44v cells the most vulnerable target for sulfasalazine. CD44vxCT cells showed the highest expression levels of proinflammatory cytokines, antioxidant enzymes, antiapoptotic molecules, and cyclin-dependent kinase inhibitors. In the Sugen5416/hypoxia mouse model, CD44v cells were present in the thickened pulmonary vascular wall. The administration of sulfasalazine started either at the same time as "Sugen5416" administration (a prevention model) or after the development of pulmonary hypertension (a reversal model) attenuated the muscularization of the pulmonary vessels, decreased the expression of markers of inflammation, and reduced the right ventricular systolic pressure, while reducing CD44v cells. In conclusion, CD44vxCT cells appear during EndMT and in pulmonary hypertension tissues. Sulfasalazine is expected to be a novel therapeutic agent for PAH, most likely targeting EndMT-derived CD44vxCT cells.

Download full-text PDF

Source
http://dx.doi.org/10.1165/rcmb.2018-0231OCDOI Listing

Publication Analysis

Top Keywords

cd44v cells
16
pulmonary hypertension
12
cd44vxct cells
12
cells
10
cd44 variant
8
pulmonary
8
pah pathogenesis
8
cd44v
7
endothelial-mesenchymal transition
4
transition drives
4

Similar Publications

Article Synopsis
  • Pancreatic ductal adenocarcinomas (PDAC) are highly aggressive and lack effective treatments; this study examines potential new therapies using rat monoclonal antibodies (mAbs) targeting specific membrane proteins.
  • Key membrane proteins such as HER1-4, MET, S1PR1, LAT1, and CD44v are frequently expressed in PDAC, and targeting them with mAbs demonstrated growth inhibition in various cancer cell lines.
  • High levels of CD44v in PDAC correlate with poor patient prognosis, indicating that targeting CD44v and related proteins could provide new diagnostic and therapeutic avenues for treating this aggressive cancer.
View Article and Find Full Text PDF

Background/aim: In a tongue-submandibular lymph node (SLN) metastasis model, the cystine/glutamate transporter solute carrier family 7, member 11 (Slc7a11), also known as xCT, was found to increase in lymphatic endothelial cells (LECs) within SLNs prior to melanoma cell metastasis. However, the precise mechanism by which xCT influences LECs remains unclear. This study aimed to explore the role of xCT in primary cultured LECs.

View Article and Find Full Text PDF

CD44 regulates cell adhesion, proliferation, survival, and stemness and has been considered a tumor therapy target. CD44 possesses the shortest CD44 standard (CD44s) and a variety of CD44 variant (CD44v) isoforms. Since the expression of CD44v is restricted in epithelial cells and carcinomas compared to CD44s, CD44v has been considered a promising target for monoclonal antibody (mAb) therapy.

View Article and Find Full Text PDF

LncRNA HOTAIRM1 promotes radioresistance in nasopharyngeal carcinoma by modulating FTO acetylation-dependent alternative splicing of CD44.

Neoplasia

October 2024

Department of Radiation Oncology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, China; Guangxi Key Laboratory of Immunology and Metabolism for Liver Diseases, Nanning, Guangxi 530021, China; Key Laboratory of Early Prevention and Treatment for Regional High-Frequency Tumors (Guangxi Medical University), Ministry of Education, Nanning, Guangxi 530021, China. Electronic address:

Background: Radiotherapy is the primary treatment for patients with nasopharyngeal carcinoma (NPC); however, almost 20% of patients experience treatment failure due to radioresistance. Therefore, understanding the mechanisms of radioresistance is imperative. HOTAIRM1 is deregulated in various human cancers, yet its role in NPC radioresistance are largely unclear.

View Article and Find Full Text PDF

Aim: Epithelial splicing regulatory protein 1 (ESRP1) regulates tumor progression and metastasis through the epithelial‒mesenchymal transition by interacting with zinc finger E-box binding 1 (ZEB1) and CD44 in cancers. However, the role of ESRP1 in intrahepatic cholangiocarcinoma (iCCA) remains unclear.

Methods: Three iCCA cell lines (HuCCT-1, SSP-25, and KKU-100) were analyzed using small interfering RNA to investigate the molecular biological functions of ESRP1 and ZEB1.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!