To investigate the distribution and diversity of the pathogens associated with Fusarium crown rot in the Huanghuai wheat-growing region (HHWGR) of China, we collected wheat samples with symptomatic stem bases from seven provinces in the HHWGR between 2013 and 2016. A total of 1196 isolates obtained from 222 locations were identified as 9 Fusarium species based on morphological and molecular identification. Of these pathogen species, F. pseudograminearum was the dominant species. Furthermore, F. sinensis was isolated from the disease specimens and tested for virulence to wheat. The result of the pathogenicity revealed that an intraspecific differentiation existed in F. pseudograminearum; sequence analysis of the EF-1α gene showed that 194 F. pseudograminearum isolates were differentiated into two distinct clades which closed to the strains from Australia and China respectively, but neither pathogenicity nor EF-1α sequence was related to the geographic origins of these isolates. However, universal rice primers-polymerase chain reaction showed a correlation with the geographical origins of the 194 isolates, which were divided into eight subclusters, the level of genetic diversity was higher within a geographical population than among the different populations. The results of these analyses can be directly used to facilitate disease monitoring and development of control strategies.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/1462-2920.14602 | DOI Listing |
Waste Manag
January 2025
Guangdong Provincial Key Lab of Agro-animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; Guangxi Key Laboratory of Sericulture Ecology and Applied Intelligent Technology/ Guangxi Collaborative Innovation Center of Modern Sericulture and Silk, Hechi University, Hechi 546300, China. Electronic address:
Sericulture waste poses significant challenges to industrial and environmental safety. Black soldier fly larvae (BSFL) offer a promising solution for organic waste management by converting it into insect protein. This study aimed to develop a microbial fermented method for utilizing sericulture waste to feed BSFL and explore the underlying mechanisms.
View Article and Find Full Text PDFAdv Sci (Weinh)
January 2025
Sheffield Institute for Translational Neuroscience, Division of Neuroscience, University of Sheffield, Sheffield, S10 2HQ, UK.
Determining the structure-function relationships of protein aggregates is a fundamental challenge in biology. These aggregates, whether formed in vitro, within cells, or in living organisms, present significant heterogeneity in their molecular features such as size, structure, and composition, making it difficult to determine how their structure influences their functions. Interpreting how these molecular features translate into functional roles is crucial for understanding cellular homeostasis and the pathogenesis of various debilitating diseases like Alzheimer's and Parkinson's.
View Article and Find Full Text PDFEnviron Health Perspect
January 2025
Department of Epidemiology, Biostatistics, and Environmental Health, School of Public Health, University of Nevada, Reno, Reno, Nevada, USA.
Background: Coccidioidomycosis, caused by inhalation of spp. spores, is an emerging infectious disease that is increasing in incidence throughout the southwestern US. The pathogen is soil-dwelling, and spore dispersal and human exposure are thought to co-occur with airborne mineral dust exposures, yet fundamental exposure-response relationships have not been conclusively estimated.
View Article and Find Full Text PDFPLoS Negl Trop Dis
January 2025
State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou, China.
Background: The determinants of differences in host infectivity among Cryptosporidium species and subtypes are poorly understood. Results from recent comparative genomic studies suggest that gains and losses of multicopy subtelomeric genes encoding insulinase-like proteases (INS-19 and INS-20 in Cryptosporidium parvum and their orthologs in closely related species) may potentially contribute to these differences.
Methodology/principal Findings: In this study, we investigated the expression and biological function of the INS-19 and INS-20 of C.
PLoS Pathog
January 2025
Institute of Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom.
Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1) is a diverse family of variant surface antigens, encoded by var genes, that mediates binding of infected erythrocytes to human cells and plays a key role in parasite immune evasion and malaria pathology. The increased availability of parasite genome sequence data has revolutionised the study of PfEMP1 diversity across multiple P. falciparum isolates.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!