The impact of airborne pollution on skin.

J Eur Acad Dermatol Venereol

Onco-Dermatology Department, CHU Nantes, CRCINA, University Nantes, Nantes, France.

Published: August 2019

Indoor and outdoor airborne pollutants modify our environment and represent a growing threat to human health worldwide. Airborne pollution effects on respiratory and cardiac health and diseases have been well established, but its impact on skin remains poorly described. Nonetheless, the skin is one of the main targets of pollutants, which reach the superficial and deeper skin layers by transcutaneous and systemic routes. In this review, we report the outcomes of basic and clinical research studies monitoring pollutant levels in human tissues including the skin and hair. We present a current understanding of the biochemical and biophysical effects of pollutants on skin metabolism, inflammatory processes and oxidative stress, with a focus on polyaromatic hydrocarbons and ground-level ozone that are widespread outdoor pollutants whose effects are mostly studied. We reviewed the literature to report the clinical effects of pollutants on skin health and skin ageing and their impact on some chronic inflammatory skin diseases. We also discuss the potential interactions of airborne pollutants with either ultraviolet radiation or human skin microbiota and their specific impact on skin health.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6766865PMC
http://dx.doi.org/10.1111/jdv.15583DOI Listing

Publication Analysis

Top Keywords

skin
11
airborne pollution
8
airborne pollutants
8
impact skin
8
effects pollutants
8
pollutants skin
8
skin health
8
pollutants
6
impact
4
impact airborne
4

Similar Publications

Bermuda grass (Cynodon dactylon) is a tropical grass found in all tropical and subtropical areas. It is widely found in Bangladesh and well known for its antimicrobial properties. Cotton gauze is a woven cloth which is used for wound dressing and wound cushioning.

View Article and Find Full Text PDF

Analyzing bacterial networks and interactions in skin and gills of Sparus aurata with microalgae-based additive feeding.

Sci Rep

December 2024

Department of Microbiology, Faculty of Sciences, CEI·MAR-International Campus of Excellence in Marine Science, University of Malaga, Málaga, Spain.

The inclusion of microalgae in functional fish diets has a notable impact on the welfare, metabolism and physiology of the organism. The microbial communities associated with the fish are directly influenced by the host's diet, and further understanding the impact on mucosal microbiota is needed. This study aimed to analyze the microbiota associated with the skin and gills of Sparus aurata fed a diet containing 10% microalgae.

View Article and Find Full Text PDF

Dynamic control of 2D non-Hermitian photonic corner skin modes in synthetic dimensions.

Nat Commun

December 2024

Institute for Research in Electronics and Applied Physics, University of Maryland, College Park, MD, USA.

Non-Hermitian models describe the physics of ubiquitous open systems with gain and loss. One intriguing aspect of non-Hermitian models is their inherent topology that can produce intriguing boundary phenomena like resilient higher-order topological insulators (HOTIs) and non-Hermitian skin effects (NHSE). Recently, time-multiplexed lattices in synthetic dimensions have emerged as a versatile platform for the investigation of these effects free of geometric restrictions.

View Article and Find Full Text PDF

Oxidative modifications can disrupt protein folds and functions, and are strongly associated with human aging and diseases. Conventional oxidation pathways typically involve the free diffusion of reactive oxygen species (ROS), which primarily attack the protein surface. Yet, it remains unclear whether and how internal protein folds capable of trapping oxygen (O) contribute to oxidative damage.

View Article and Find Full Text PDF

The hybrid skin-topological effect (HSTE) has recently been proposed as a mechanism where topological edge states collapse into corner states under the influence of the non-Hermitian skin effect (NHSE). However, directly observing this effect is challenging due to the complex frequencies of eigenmodes. In this study, we experimentally observe HSTE corner states using synthetic complex frequency excitations in a transmission line network.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!