Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Mass media reports can induce individual behaviour change during a disease outbreak, which has been found to be useful as it reduces the force of infection. We propose a compartmental model by including a new compartment of the intensity of the media reports, which extends existing models by considering a novel media function, which is dependent both on the number of infected individuals and on the intensity of mass media. The existence and stability of the equilibria are analyzed and an optimal control problem of minimizing the total number of cases and total cost is considered, using reduction or enhancement in the media reporting rate as the control. With the help of Pontryagin's Maximum Principle, we obtain the optimal media reporting intensity. Through parameterization of the model with the 2009 A/H1N1 influenza outbreak data in the 8th Hospital of Xi'an in Shaanxi Province of China, we obtain the basic reproduction number for the formulated model with two particular media functions. The optimal media reporting intensity obtained here indicates that during the early stage of an epidemic we should quickly enhance media reporting intensity, and keep it at a maximum level until it can finally weaken when epidemic cases have decreased significantly. Numerical simulations show that media impact reduces the number of cases during an epidemic, but that the number of cases is further mitigated under the optimal reporting intensity. Sensitivity analysis implies that the outbreak severity is more sensitive to the weight α1 (weight of media effect sensitive to infected individuals) than weight α2 (weight of media effect sensitive to media items).
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6428274 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0213898 | PLOS |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!