A Box-Behnken designed study was completed to predict growth performance, carcass characteristics and plasma hormone and metabolite levels as influenced by dietary energy, amino acid densities and starch to lipid ratios in male broiler chickens. The design comprised three dietary energy densities (11.25, 12.375 and 13.5 MJ/kg), three digestible lysine concentrations (9.2, 10.65 and 12.1 g/kg) and three starch to lipid ratios (4.5, 12.25 and 20.0) in broiler diets based on maize and soybean meal. Each of thirteen dietary treatments was offered to 10 replicates of 15 birds per replicate floor pen or a total of 1,950 Ross 308 male broiler chickens from 21 to 35 days post-hatch. Increasing dietary energy decreased feed intake with a quadratic relationship between feed intake and dietary standardised ileal digestible (SID) Lys concentrations, where increasing SID Lys initially increased and then depressed feed intake. Increasing dietary amino acid density increased body weight gain and carcass weight; however, dietary energy did not influence body weight gain, carcass and breast meat weight. Feed efficiency was positively influenced by energy and amino acid densities but negatively influenced by starch to lipid ratios and energy and amino acids had more pronounced impacts than starch to lipid ratios. This study indicated that both energy and amino acid densities regulate feed intakes in broiler chickens. Body weight gain of modern broiler chickens is more responsive to amino acid densities; nevertheless, dietary energy density continues to play an important role in protein utilisation, as reflected in significantly reduced plasma uric acid levels.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6428332PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0213875PLOS

Publication Analysis

Top Keywords

dietary energy
24
amino acid
24
energy amino
20
starch lipid
20
lipid ratios
20
broiler chickens
20
acid densities
16
feed intake
12
body weight
12
weight gain
12

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!