Despite technological improvement and advances in biology-driven patient stratification, many patients still fail radiotherapy resulting in loco-regional and distant recurrence. Tumor heterogeneity remains a key challenge to effective cancer treatment, and reliable stratification of cancer patients for prediction of outcomes is highly important. Intratumoral heterogeneity is manifested at the different levels, including different tumorigenic properties of cancer cells. Since John Dick et al. isolated leukemia initiating cells in 1990, the populations of tumor initiating or cancer stem cells (CSCs) were identified and characterized also for a broad spectrum of solid tumor types. The properties of CSCs are of considerable clinical relevance: CSCs have self-renewal and tumor initiating potential, and the metastases are initiated by the CSC clones with the ability to disseminate from the primary tumor site. Evidence from both, experimental and clinical studies demonstrates that the probability of achieving local tumor control by radiation therapy depends on the complete eradication of CSC populations. The number, properties and molecular signature of CSCs are highly predictive for clinical outcome of radiotherapy, whereas targeted therapies against CSCs combined with conventional treatment are expected to provide an improved clinical response and prevent tumor relapse. In this review, we discuss the modern methods to study CSCs in radiation biology, the role of CSCs in personalized cancer therapy as well as future directions for CSC research in translational radiooncology.

Download full-text PDF

Source
http://dx.doi.org/10.1080/09553002.2019.1589023DOI Listing

Publication Analysis

Top Keywords

cancer stem
8
stem cells
8
tumor initiating
8
tumor
7
cscs
7
cancer
6
cells
4
radiation
4
cells radiation
4
radiation response
4

Similar Publications

Matrigel/BME, a basement membrane-like preparation, supports long-term growth of epithelial 3D organoids from adult stem cells [T. Sato , , 262-265 (2009); T. Sato , , 1762-1772 (2011)].

View Article and Find Full Text PDF

Patients with relapsed or refractory (R/R) diffuse large B-cell lymphoma (DLBCL) have poor outcomes. Gemcitabine + oxaliplatin (GemOx) with rituximab, a standard salvage therapy, yields complete response (CR) rates of approximately 30% and median overall survival (OS) of 10-13 months. Patients with refractory disease fare worse, with a CR rate of 7% for subsequent therapies and median OS of 6 months.

View Article and Find Full Text PDF

Purpose: Lumbar puncture is a frequently performed procedure for patients undergoing treatment for acute lymphoblastic leukemia. This brief procedure is frequently performed with sedation in young patients but with only local anesthesia in adults. Adolescent and young adult patients may be cared for by physicians with different training backgrounds and sedation preferences, making the utilization of sedation for lumbar punctures variable among providers.

View Article and Find Full Text PDF

Human recombination-activating gene (RAG) deficiency can manifest with distinct clinical and immunological phenotypes. By applying a multiomics approach to a large group of -mutated patients, we aimed at characterizing the immunopathology associated with each phenotype. Although defective T and B cell development is common to all phenotypes, patients with hypomorphic variants can generate T and B cells with signatures of immune dysregulation and produce autoantibodies to a broad range of self-antigens, including type I interferons.

View Article and Find Full Text PDF

Mesenchymal stem cells (MSCs) are a class of protocells that can differentiate into various cell types and have robust replication and renewal capabilities. MSCs secrete various nutritional factors to regulate the microenvironment of tumor tissues. The mechanism by which they inhibit or promote tumor growth may be closely related to MSC-derived exosomes (MSC-Exo).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!