Sodium 9,10-anthraquinone-2,6-disulfonate (Na AQ26DS), with polyanionic character and two O-Na ionic bonds, is found to be a highly stable organic cathode in Na-ion batteries, delivering capacities of approximately 120 mAh g for 300 cycles (50 mA g ) and around 99 mAh g for 1000 cycles (1 A g ). These results are the best performance reported to date for small-molecule, anthraquinone-based organic cathodes in Li-, Na-, or K-ion batteries.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/cssc.201900539 | DOI Listing |
Nature
January 2025
Department of Biochemistry, University of Washington, Seattle, WA, USA.
Snakebite envenoming remains a devastating and neglected tropical disease, claiming over 100,000 lives annually and causing severe complications and long-lasting disabilities for many more. Three-finger toxins (3FTx) are highly toxic components of elapid snake venoms that can cause diverse pathologies, including severe tissue damage and inhibition of nicotinic acetylcholine receptors, resulting in life-threatening neurotoxicity. At present, the only available treatments for snakebites consist of polyclonal antibodies derived from the plasma of immunized animals, which have high cost and limited efficacy against 3FTxs.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
Department of Chemistry, University of Idaho, Moscow, Idaho 83844-2343, United States.
Lead azide (LA) is a widely utilized primary explosive, serving as the initiating charge in blasting caps or detonators to start the detonation process of secondary explosives. The toxicity and environmental concerns associated with LA have led to regulatory restrictions and increased scrutiny, prompting the search for lead-free alternatives. LA is highly sensitive toward heat, shock, or friction, which poses safety challenges during manufacturing, handling, and storage.
View Article and Find Full Text PDFSci Total Environ
January 2025
School of Geography and Environmental Science, University of Southampton, UK.
Substantial amounts of mercury (Hg) are projected to be released into Arctic watersheds as permafrost thaws amid warmer and wetter conditions. This may have far-reaching consequences because the highly toxic methylated form of Hg biomagnifies rapidly in ecosystems. However, understanding how climate change affects Hg dynamics in permafrost regions is limited due to the lack of long-term Arctic Hg records.
View Article and Find Full Text PDFNat Nanotechnol
January 2025
Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, China.
The miniaturization of light-emitting diodes (LEDs) is pivotal in ultrahigh-resolution displays. Metal-halide perovskites promise efficient light emission, long-range carrier transport and scalable manufacturing for bright microscale LED (micro-LED) displays. However, thin-film perovskites with inhomogeneous spatial distribution of light emission and unstable surface under lithography are incompatible with the micro-LED devices.
View Article and Find Full Text PDFJ Colloid Interface Sci
January 2025
School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an 710049 China. Electronic address:
Transition metal phosphorus (TMPs) and sulfides have attracted extensive attention as important candidates to replace noble metal-based hydrogen evolution (HER) catalysts. However, the insufficient specific surface area, low conductivity and easy detachments from electrode seriously affect the HER catalytic activity and stability. Herein, a novel self-supported hollow Janus-structured NiCoP/P-MoS heterojunction is designed on carbon cloth (CC) as high-performance electrocatalyst for alkaline HER.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!