Half-Heusler, HH, alloys are widely used n-type materials in thermoelectric applications. Today, there is a shortage in p-type HH based materials, which may have an inherent compatibility with the HH n-type pair. Al is a good candidate as an acceptor doping element for this purpose, and the results on alloying of TiNiSn-based HH with Al are reported in details. Combination of CALPHAD and ab initio DFT calculations with an experimental validation was carried out. It is demonstrated that low level Al doping leads to p-type conductivity of the material. The solubility of Al was predicted by calculations and experimentally confirmed. The stable phases with compositions above the solubility limit of Al were determined, including an assessment of the maximal Al solubility in the HH (Ti1-cAlc)NiSn phase up to 1400 K. In addition, a Scheil solidification simulation with the known TiNiSn CALPHAD database was used, in order to further understand the as-cast phase structure. It is shown that beyond the solubility limit the stable phases at room temperature are TiNiSn(HH), Sn(BCT) and NiAl(B2). The maximal solubility of Al in the HH phase is estimated as ∼1 at% at 1400 K. These results give the basic route for designing of (Ti1-cAlc)NiSn as a p-type thermoelectric element.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c9cp00764d | DOI Listing |
Anal Chem
January 2025
Instrumental Analytical Chemistry, University of Duisburg-Essen, Universitätsstraße 5, 45141 Essen, Germany.
Compound-specific stable isotope analysis (CSIA) using liquid chromatography-isotope ratio mass spectrometry (LC-IRMS) is a powerful tool for determining the isotopic composition of carbon in analytes from complex mixtures. However, LC-IRMS methods are constrained to fully aqueous eluents. Previous efforts to overcome this limitation were unsuccessful, as the use of organic eluents in LC-IRMS was deemed impossible.
View Article and Find Full Text PDFInorg Chem
January 2025
Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai, Miyagi 980-8577, Japan.
This study introduces a new method for synthesizing Cu-containing metastable phases through ion exchange. Traditionally, CuCl has been used as a Cu ion source for solid-state ion exchanges; however, its thermodynamic driving force is often insufficient for complete ion exchange with Li-containing precursors. First-principles calculations have identified CuSO and CuPO as more powerful alternatives, providing a higher driving force than CuCl.
View Article and Find Full Text PDFJ Sci Food Agric
January 2025
Department of Food Engineering and Technology, Tezpur University, Tezpur, India.
Background: Incorporating β-carotene into food systems improves nutritional value by providing a natural source of vitamin A. However, maintaining its stability during processing and storage is a significant barrier for its bioavailability.
Results: This study investigated the utilization of banana rachis nanocellulose (BRNC) as a natural stabilizer in the formulation of Pickering nanoemulsion (PNE).
Front Bioeng Biotechnol
January 2025
Pharmaceutical Development Biologicals, TIP, Boehringer Ingelheim Pharma GmbH & Co., KG, Innovation Unit, Biberach an der Riss, Germany.
Polysorbates, in particular polysorbate (PS) 20 and 80, are the most commonly used surfactants for stabilising biotherapeutics produced by biotechnological processes. PSs are derived from ethoxylated sorbitan (a derivative of sorbitol) esterified with fatty acids of varying chain length and degree of saturation. In the past, these surfactants have been reported to have specific liabilities.
View Article and Find Full Text PDFDiagnostic delays prevent most Chagas disease patients from receiving timely therapy during the acute phase when treatment is effective. qPCR-based diagnostic methods provide high sensitivity during this phase but require specialized equipment and complex protocols. More simple and cost-effective tools are urgently needed to optimize early Chagas disease diagnosis in low-income endemic regions.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!