For flexible devices that inevitably undergo repetitive deformations, it is important to evaluate and control the mechanical strain imposed on the flexible systems for enhancing the reliability. In this paper, a novel experimental method to directly visualize cross-sectional strain distribution in the thin flexible devices is proposed. Digital image correlation (DIC) is effectively adapted by using microscopic images of the cross section for accurate analysis of the microscale deformations. To conduct the DIC strain analysis, speckle patterning is accomplished by using microparticles from diamond-abrasive suspensions with optimized fabrication conditions. First, the cross-sectional micro-DIC analysis is performed successfully for 100 μm-thick substrates. Full-field strain quantification and easy inspection of a neutral plane are demonstrated and compared with results of finite element analysis simulation. Using the presented method, generation of multiple neutral planes is clearly visualized for a trilayer structure with a very soft adhesive midlayer, where strain decoupling occurs by severe shear deformation of the soft adhesive layer. Furthermore, bending strain distribution in a flexible fabric-reinforced polymer (FRP) substrate is also investigated to analyze and predict fatigue fracture in the complex inner structure under repetitive bending loading.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.9b01480DOI Listing

Publication Analysis

Top Keywords

strain distribution
12
flexible devices
12
cross-sectional strain
8
distribution flexible
8
soft adhesive
8
strain
7
flexible
5
direct visualization
4
visualization cross-sectional
4
devices flexible
4

Similar Publications

Bluetongue virus (BTV) and epizootic hemorrhagic disease virus (EHDV) are vector-borne orbiviruses that pose an emerging threat to livestock, including cattle and sheep. This review summarizes the global distribution, genetic diversity, and key factors driving their spread along with the existing knowledge gaps and recommendations to mitigate their impact. Both viruses cause hemorrhagic disease in susceptible ruminants and are commonly reported in tropical and subtropical regions including North America, Asia, Africa, Oceania, and some parts of Europe.

View Article and Find Full Text PDF

Bluetongue (BT) is considered endemic in the southern states of India, with sporadic incidences reported from the northern, western and central parts of India. However, the eastern and north-eastern states of India have not experienced active disease so far. In the recent past, an extensive sero-epidemiological investigation was carried out in the eastern and north-eastern Indian states.

View Article and Find Full Text PDF

Atypical porcine pestivirus (APPV) was first identified in 2015 in North America by high-throughput sequencing. APPV is associated with congenital tremor A-II and is widely distributed worldwide. In this study, a total of 2630 samples of domestic pigs obtained from 14 regions of Russia from 2020 to 2024 were screened for APPV presence by qRT-PCR.

View Article and Find Full Text PDF

Strain TE5 was isolated from a wheat ( L. subsp. ) rhizosphere grown in a commercial field of wheat in the Yaqui Valley in Mexico.

View Article and Find Full Text PDF

Development and Characterization of Hyaluronic Acid Graft-Modified Polydopamine Nanoparticles for Antibacterial Studies.

Polymers (Basel)

January 2025

School of Biomedical Engineering and Imaging, Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, China.

The problem of antibiotic abuse and drug resistance is becoming increasingly serious. In recent years, polydopamine (PDA) nanoparticles have been recognized as a potential antimicrobial material for photothermal therapy (PTT) due to their excellent photothermal conversion efficiency and unique antimicrobial ability. PDA is capable of rapidly converting light energy into heat energy under near-infrared (NIR) light irradiation to kill bacteria efficiently.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!