Background/purpose: It is well-known that diverse types of blood proteins contribute to healing process via different mechanisms. Presence and potential involvements of blood-derived abundant proteins in the platelet-rich fibrin (PRF) to its regenerative capacity have not been sufficiently emphasized in the literature. The aim of this paper was to analyze the abundant proteome content of PRF and summarize previously reported effects of identified proteins on wound healing via a literature review.
Materials And Methods: The PRF samples obtained from non-smoking, systemically healthy volunteers were subjected to 2D gel electrophoresis after extracting the proteins from fibrin matrices. All matching spots were excised from the gels and identified by MALDI TOF/TOF MS/MS analysis. A literature review was conducted to reveal possible contributions of identified proteins to wound healing.
Results: Totally, thirty-five blood proteins were commonly identified among all studied samples. These proteins included serine protease inhibitors, such as alpha-1-antitrypsin, alpha-1-antichymotrypsin, alpha-1-acid glycoprotein, inter-alpha-trypsin-inhibitor, protease C1 inhibitor, and complement proteins. In addition, abundant presence of immunoglobulin G was observed. The abundance of albumin, haptoglobin, ceruloplasmin vitronectin, fetuin-A, ficolin-3 and transthyretin was also detected.
Conclusion: The results of this study indicated that PRF abundantly contains blood-origin actors which were previously reported for their direct contribution to wound healing. Further studies exploring the protein content of PRF are needed to reveal its undisclosed potential roles in the healing process.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6388803 | PMC |
http://dx.doi.org/10.1016/j.jds.2018.08.004 | DOI Listing |
Background: Acne is an inflammatory skin disease afflicting the majority of the world's population at some point in their lifetime, and is seen to be chronic in about 50% of cases. Acne leads to significant social withdrawal, depression, and disfiguring scars in many cases. Available treatments are characterized by high rates of relapse, dangerous side effects, and social stigma, which often leads to poor patient compliance and treatment failure.
View Article and Find Full Text PDFRegulatory T cells (Tregs) are increasingly being recognized for their role in promoting tissue repair. In this issue of the JCI, Chen et al. found that Tregs at the site of bone injury contribute to bone repair.
View Article and Find Full Text PDFAnticancer Agents Med Chem
January 2025
Department of Biochemistry, Faculty of Science, Selcuk University, Konya, Turkiye.
Introduction/objective: Plants and their bioactive compounds play a crucial role in the pharmaceutical industry for treating cancer. To date, the cytotoxic and antiproliferative effects of Hypericum perforatum methanol extract on human thyroid cancer cell lines have not been thoroughly explored. The present study aimed to assess the potential anti-cancer effects of HPME on human thyroid cancer and investigate its potential therapeutic benefits.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
Shanghai Jiao Tong University, Chemistry, 800 Dongchuan Road, Minhang, 200240, Shanghai, CHINA.
Hydrogen sulfide (H2S) plays crucial inflammatory modulating roles, representing a promising candidate for anti-inflammatory therapies. However, current H2S delivery approaches lack sufficient specificity against inflammatory response. Herein, regarding the overexpressed aminopeptidase N (APN) at the inflammation sites, an APN-activated self-immolative carbonyl sulfide (COS)/H2S donor (AlaCOS) was developed for inflammatory response-specific H2S delivery.
View Article and Find Full Text PDFWorld J Diabetes
January 2025
Department of Nephrology, Zhejiang Provincial People's Hospital Bijie Hospital, Bijie 551700, Guizhou Province, China.
Diabetic foot ulcers (DFUs) represents a significant public health issue, with a rising global prevalence and severe potential complications including amputation. Traditional treatments often fall short due to various limitations such as high recurrence rates and extensive resource utilization. This editorial explores the innovative use of acellular fish skin grafts as a transformative approach in DFU management.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!