Force and vibration correlation analysis in the self-adjusting file during root canal shaping: An in-vitro study.

J Dent Sci

CAD/CAM Lab, Mechanical Engineering Discipline, PDPM, Indian Institute of Information Technology, Design and Manufacturing Jabalpur, Madhya Pradesh 482005, India.

Published: September 2018

Background/purpose: The focus of this study was to find a correlation between the forces and vibrations during root canal shaping. This can be used to predict the fracture of the self-adjusting file (SAF) in root canal shaping.

Materials And Methods: Forty J-shaped resin blocks were used in this study. Simulated root canals of resin blocks were prepared with the SAF. Force and vibration during root canal shaping were measured by dynamometer and accelerometer respectively. The recorded time domain signal of force and vibration were transformed to frequency domain signals. Frequency domain signals had been used for correlation study between force and vibration amplitude. The root mean square (RMS) value of force and vibration signature for new file and file just before failure were statistically compared using t-test at 95% confidence interval (CI).

Results: Vibrations generated during root canal shaping exhibited positive linear correlation ( = 0.9173) with force exerted by the SAF on the root canal. It means vibration has strong correlation with force. The RMS values of force and vibration increase significantly ( < 0.05) just before the fracture.

Conclusion: From force and vibration analysis of SAF it was concluded that the vibration is well associated with force applied by the SAF on root canal. Therefore, the trend of force variation was reflected in the vibration signature. The sudden increment in vibration was the symptom of bulge formation and the end of useful life of the SAF.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6388799PMC
http://dx.doi.org/10.1016/j.jds.2018.01.002DOI Listing

Publication Analysis

Top Keywords

force vibration
24
root canal
24
canal shaping
16
force
8
self-adjusting file
8
root
8
saf root
8
resin blocks
8
frequency domain
8
domain signals
8

Similar Publications

Piezoresistive Cantilever Microprobe with Integrated Actuator for Contact Resonance Imaging.

Sensors (Basel)

January 2025

Institute of Semiconductor Technology (IHT), Technische Universität Braunschweig, Hans-Sommer-Straße 66, 38106 Braunschweig, Germany.

A novel piezoresistive cantilever microprobe (PCM) with an integrated electrothermal or piezoelectric actuator has been designed to replace current commercial PCMs, which require external actuators to perform contact-resonance imaging (CRI) of workpieces and avoid unwanted "forest of peaks" observed at large travel speed in the millimeter-per-second range. Initially, a PCM with integrated resistors for electrothermal actuation (ETA) was designed, built, and tested. Here, the ETA can be performed with a piezoresistive Wheatstone bridge, which converts mechanical strain into electrical signals by boron diffusion in order to simplify the production process.

View Article and Find Full Text PDF

Comparative Study on Hyperelastic Constitutive Models for the Static and Dynamic Behavior of Resilient Mounts.

Materials (Basel)

January 2025

School of Electrical & Control Engineering, Tongmyong University, Busan 48520, Republic of Korea.

Resilient mounts play a vital role in anti-vibration and shock-absorption systems, making precise estimation of their static and dynamic stiffness essential for ensuring optimal mechanical performance and effective design. This study investigates the behavior of resilient mounts by analyzing their static and dynamic stiffness characteristics through the application of various hyperelastic constitutive models. Seven hyperelastic models were reviewed and systematically compared using numerical simulations, experimental data, and analytical solutions.

View Article and Find Full Text PDF

Silk fibroin, known for its biocompatibility and biodegradability, holds significant promise for biomedical applications, particularly in drug delivery systems. The precise fabrication of silk fibroin particles, specifically those ranging from tens of nanometres to hundreds of microns, is critical for these uses. This study introduces elliptical vibration micro-turning as a method for producing silk fibroin particles in the form of cutting chips to serve as carriers for drug delivery systems.

View Article and Find Full Text PDF

Modeling and Characterization of Multilayer Piezoelectric Stacks via Dynamic Stiffness Method.

Micromachines (Basel)

December 2024

GREMAN UMR 7347 CNRS, Université de Tours, INSA Centre Val de Loire, 3 Rue de la Chocolaterie, 41000 Blois, France.

Multilayer piezoelectric stacks, which are multiple layers of piezoelectric materials placed on top of each other, are widely used to achieve precise linear movement and high-force generation. In this paper, a dynamic stiffness (DS) method for the dynamic vibration analysis of multilayer piezoelectric stacks is presented. First, the general solutions for all physical quantities of the three vibration contributions (i.

View Article and Find Full Text PDF

To address the challenge of accurately capturing tool wear states in small sample scenarios, this paper proposes a tool wear prediction method that combines XGBoost feature selection with a PSO-BP network. In order to solve the problem of input feature selection and parameter selection in BP neural network, a double-layer programming model of input feature and parameter selection is established, which is solved by XGBoost and PSO. Initially, vibration and cutting force signals from CNC machining are preprocessed using time-domain segmentation, Hampel filtering, and wavelet denoising.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!