Background/purpose: Gingiva-derived mesenchymal stem cells (GMSCs) are attractive alternative MSC sources because of their relative abundance of sources and ease of accessibility. However, the isolation method for harboring GMSCs remains under discussion. The aim of the study was to isolate and explore characterization of human GMSCs, and compare stem cell properties with bulk-cultured gingival fibroblasts (GFs).
Materials And Methods: GMSCs were isolated with limiting dilution method. Tissue-matched bulk-cultured GFs and GMSCs were evaluated in terms of their colony-forming abilities, population doubling capacities, cell surface epitopes, and multilineage differentiation potentials.
Results: GMSCs showed a significantly higher number of colony-forming units-fibroblast (P < 0.001) than bulk-cultured GFs, while the population doubling capacity of GMSCs reduced. Both types of cells were uniformly positive for MSC-associated makers CD44, CD73, CD90, CD105, and CD166, and were negative for hematopoietic markers CD14, CD34, and CD45. The only distinct marker was STRO-1, which was more highly expressed in GMSCs (13.4%) than in bulk-cultured GFs (0.02%). Upon induction, GMSCs displayed the capacity to undergo osteogenic, adipogenic, and chondrogenic differentiation. Real-time polymerase chain reaction showed related gene levels were significantly upregulated (P < 0.001). By contrast, bulk-cultured GFs lacked the capacity to undergo multilineage differentiation, and related gene levels showed no significant difference when compared with control groups.
Conclusion: The data validate the effectiveness of limiting dilution method for GMSCs isolation. GMSCs, in contrast to bulk-cultured GFs, harbor stem cell characteristics and can act as alternative cell sources for tissue engineering.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6395297 | PMC |
http://dx.doi.org/10.1016/j.jds.2016.03.010 | DOI Listing |
Phys Rev Lett
December 2024
BM Research Europe, Hartree Centre, Daresbury WA4 4AD, United Kingdom.
In this Letter, we study the phase transition between amorphous ices and the nature of the hysteresis cycle separating them. We discover that a topological transition takes place as the system transforms from low-density amorphous ice (LDA) at low pressures to high-density amorphous ice (HDA) at high pressures. Specifically, we uncover that the hydrogen bond network (HBN) displays qualitatively different topologies in the LDA and HDA phases: the former characterized by disentangled loop motifs, with the latter displaying topologically complex long-lived Hopf-linked and knotted configurations.
View Article and Find Full Text PDFJ Vis Exp
January 2025
State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University;
The extent of functional sequences within the human genome is a pivotal yet debated topic in biology. Although high-throughput reverse genetic screens have made strides in exploring this, they often limit their scope to known genomic elements and may introduce non-specific effects. This underscores the urgent need for novel functional genomics tools that enable a deeper, unbiased understanding of genome functionality.
View Article and Find Full Text PDFJ Vis Exp
January 2025
Center for Gender-Specific Medicine, Istituto Superiore di Sanità.
Transgender (TG) people are individuals whose gender identity and sex assigned at birth do not match. They often undergo gender-affirming hormone therapy (GAHT), a medical intervention that allows the acquisition of secondary sex characteristics more aligned with their individual gender identity, providing consistent results in the improvement of numerous socio-psychological variables. However, GAHT targets different body systems, and some side effects are recorded, although not yet fully identified and characterized.
View Article and Find Full Text PDFJ Vis Exp
January 2025
Department of Biomedical Engineering, Washington University in St. Louis; Department of Obstetrics & Gynecology, Washington University in St. Louis;
For noninvasive light-based physiological monitoring, optimal wavelengths of individual tissue components can be identified using absorption spectroscopy. However, because of the lack of sensitivity of hardware at longer wavelengths, absorption spectroscopy has typically been applied for wavelengths in the visible (VIS) and near-infrared (NIR) range from 400 to 1,000 nm. Hardware advancements in the short-wave infrared (SWIR) range have enabled investigators to explore wavelengths in the ~1,000 nm to 3,000 nm range in which fall characteristic absorption peaks for lipid, protein, and water.
View Article and Find Full Text PDFAppl Microbiol Biotechnol
January 2025
Chair of Microbiology, Technical University of Munich, TUM School of Life Science, Emil-Ramann-Str. 4, 85354, Freising, Germany.
The anaerobic bacterium Clostridium cellulovorans is a promising candidate for the sustainable production of biofuels and platform chemicals due to its cellulolytic properties. However, the genomic engineering of the species is hampered because of its poor genetic accessibility and the lack of genetic tools. To overcome this limitation, a protocol for triparental conjugation was established that enables the reliable transfer of vectors for markerless chromosomal modification into C.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!