Loss of Causes Regional Changes in Expression in Developing Cerebral Cortex.

Front Cell Neurosci

Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom.

Published: March 2019

The transcription factor Pax6 controls multiple aspects of forebrain development. Conditional deletion of in embryonic mouse cortex causes increased proliferation of cortical progenitor cells and a concomitant decrease in neural differentiation. Notch signaling regulates the balance between proliferation and differentiation of cortical progenitor cells, suggesting a possible connection between Pax6 and Notch signaling. We investigated how expression of the Notch ligand () is altered by loss of Pax6. Acute cortex-specific deletion of Pax6 resulted in a widespread decrease in the density of + cells at embryonic days 12.5 and 13.5 (E12.5 and E13.5). In constitutive loss-of-function mutants, decreases in the densities of + cells were more limited both spatially and temporally. Controlled over-expression of Pax6 had no detectable effect on expression. The proneural transcription factor Neurog2 is a target of Pax6 that can activate expression and we found clear co-expression of and in radial glial progenitors, suggesting that Pax6's effect on could be mediated through Neurog2. However, we found no change in + cells in cortex suggesting either that Neurog2 is not directly involved, or that its loss of function in embryonic cortex can be compensated for.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6414449PMC
http://dx.doi.org/10.3389/fncel.2019.00078DOI Listing

Publication Analysis

Top Keywords

transcription factor
8
cortical progenitor
8
progenitor cells
8
notch signaling
8
pax6
6
cells
5
loss regional
4
regional changes
4
expression
4
changes expression
4

Similar Publications

People living with HIV (PLWH) experience HIV-associated neurocognitive disorders (HAND), even though combination antiretroviral therapy (cART) suppresses HIV replication. HIV-1 transactivator of transcription (HIV-1 Tat) contributes to the development of HAND through neuroinflammatory and neurotoxic mechanisms. C-C chemokine 5 receptor (CCR5) is important in immune cell targeting and is a co-receptor for HIV viral entry into CD4+ cells.

View Article and Find Full Text PDF

Autophagic flux blockade and excessive oxidative stress play important roles in the pathogenesis of diabetic vascular calcification (VC). Transcription factor EB (TFEB) is an important regulator of many autophagy-lysosomal related components, which is mainly involved in promoting autophagy process in cells. Nuclear factor erythroid-2 related factor 2 (Nrf2) antioxidant system is considered as one of the key pathways in response to intracellular oxidative stress.

View Article and Find Full Text PDF

Ambivalent partnership of the Drosophila posterior class Hox protein Abdominal-B with Extradenticle and Homothorax.

PLoS Genet

January 2025

Centro de Biología Molecular Severo Ochoa (CBM), CSIC-UAM, Universidad Autónoma de Madrid, Cantoblanco, Madrid, Spain.

Hox proteins, a sub-group of the homeodomain (HD) transcription factor family, provide positional information for axial patterning in development and evolution. Hox protein functional specificity is reached, at least in part, through interactions with Pbc (Extradenticle (Exd) in Drosophila) and Meis/Prep (Homothorax (Hth) in Drosophila) proteins. Most of our current knowledge of Hox protein specificity stems from the study of anterior and central Hox proteins, identifying the molecular and structural bases for Hox/Pbc/Meis-Prep cooperative action.

View Article and Find Full Text PDF

TBX3 is Essential for Zygotic Genome Activation and Embryonic Development in Pigs.

Microsc Microanal

January 2025

Department of Animal Science, Chungbuk National University, Cheongju, Chungbuk 28644, Republic of Korea.

The pluripotency-related T-box family transcription factor TBX3 maintains mESC self-renewal and plays a key role in the development of several tissues, including the heart, mammary glands, limbs, and lungs. However, the role of TBX3 during porcine preimplantation embryo development remains unclear. In our research, TBX3 was knocked down by injecting dsRNA to explore the function of TBX3.

View Article and Find Full Text PDF

Aluminum Induces Neurotoxicity through the MicroRNA-98-5p/Insulin-like Growth Factor 2 Axis.

ACS Chem Neurosci

January 2025

Department of Occupational Health, School of Public Health, Shanxi Medical University, Taiyuan, Shanxi 030001, China.

Aluminum is a well-known and widely distributed environmental neurotoxin. This study aimed to investigate the effect of miR-98-5p targeting insulin-like growth factor 2 (IGF2) on aluminum neurotoxicity. Thirty-two Sprague-Dawley rats were randomly divided into four groups and administered 0, 10, 20, and 40 μmol/kg maltol aluminum [Al(mal)], respectively.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!