Functional identification of alginate lyase from the brown alga Saccharina japonica.

Sci Rep

Laboratory of Marine Biotechnology and Microbiology, Graduate School of Fisheries Sciences, Hokkaido University, 3-1-1 Minato-cho, Hakodate, Hokkaido, Japan.

Published: March 2019

Despite the progress in massive gene analysis of brown algal species, no alginate-degrading enzyme from brown alga has been identified, impeding the understanding of alginate metabolism in brown alga. In the current study, we identified and characterized alginate lyase from Saccharina japonica using a protein-based approach. First, cDNA library was prepared from the S. japonica sporophyte. Expression screening was then performed; the encoding gene was identified and cloned; and the recombinant enzyme was purified and characterized. Alginate lyase production in algal tissues was evaluated by western blotting. The identified alginate lyase, SjAly (359 amino acids, with a predicted N-terminal secretion signal of 27 residues), is encoded by an open reading frame comprising seven exons. Recombinant SjAly exhibited endolytic alginate lyase activity, specifically toward stretches of consecutive β-D-mannuronic acid units. The optimum temperature, pH, and NaCl concentration were 30 °C, pH 8.0, and 100 mM, respectively. SjAly exhibited pronounced activity below 20 °C, the S. japonica growth temperature. SjAly was highly expressed in the blade but not the stipe and rhizoid. The data indicate that S. japonica possesses at least one active alginate lyase. This is the first report of a functional alginate lyase from brown alga, the major natural alginate producer.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6426991PMC
http://dx.doi.org/10.1038/s41598-019-41351-6DOI Listing

Publication Analysis

Top Keywords

alginate lyase
28
brown alga
16
alginate
9
lyase brown
8
saccharina japonica
8
characterized alginate
8
sjaly exhibited
8
lyase
7
brown
5
japonica
5

Similar Publications

Directed Evolution of an Alginate Lyase from sp. for Seaweed Fertilizer Production from the Brown Seaweed .

J Agric Food Chem

January 2025

College of Food Science and Nutritional Engineering, China Agricultural University, No.17 Qinghua East Road, Haidian District, Beijing 100083, China.

An alginate lyase (FsAly7) from sp. was engineered by directed evolution to improve its optimum temperature and thermostability. The optimum temperature of the positive mutant mFsAly7 (FsAly7-Ser43Pro) was increased by 5 °C, and the thermal inactivation half-lives at 40 and 45 °C were 4.

View Article and Find Full Text PDF

A bifunctional endolytic alginate lyase with two different lyase catalytic domains from sp. H204.

Front Microbiol

December 2024

Key Laboratory of Agro-Products Processing Technology of Shandong Province, Key Laboratory of Novel Food Resources Processing Ministry of Agriculture, Institute of Food & Nutrition Science and Technology, Shandong Academy of Agricultural Sciences, Jinan, China.

Alginate lyases can fully degrade alginate into various size-defined unsaturated oligosaccharide products by -elimination. Here, we identified the bifunctional endolytic alginate lyase Aly35 from the marine bacterium sp. Strain H204.

View Article and Find Full Text PDF

Genome Analysis of a Polysaccharide-Degrading Bacterium sp. HZ11 and Degradation of Alginate.

Mar Drugs

December 2024

Yantai Key Laboratory of Characteristic Agricultural Bioresource Conservation & Germplasm Innovative Utilization, School of Life Sciences, Yantai University, Yantai 264000, China.

Marine bacteria are crucial sources of alginate lyases, which play an essential role in alginate oligosaccharide (AOS) production. This study reports the biochemical characteristics of a new species of the genus, sp. HZ11.

View Article and Find Full Text PDF

Microbial enzymes as powerful natural anti-biofilm candidates.

Microb Cell Fact

December 2024

Department of Microbiology and Immunology, Faculty of Pharmacy, Delta University for Science and Technology, International Coastal Road, Gamasa, 11152, Egypt.

Bacterial biofilms pose significant challenges, from healthcare-associated infections to biofouling in industrial systems, resulting in significant health impacts and financial losses globally. Classic antimicrobial methods often fail to eradicate sessile microbial communities within biofilms, requiring innovative approaches. This review explores the structure, formation, and role of biofilms, highlighting the critical importance of exopolysaccharides in biofilm stability and resistance mechanisms.

View Article and Find Full Text PDF

Alginate, a polysaccharide found in brown seaweeds, has regularly gained attention for its potential use as a source of bioactive compounds. However, it is structurally complex with a high molecular weight, limiting its application. Alginate oligosaccharides (AOS) are small, soluble fragments, making them more bioavailable.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!