A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

An experimental evaluation of fracture movement in two alternative tibial fracture fixation models using a vibrating platform. | LitMetric

An experimental evaluation of fracture movement in two alternative tibial fracture fixation models using a vibrating platform.

Proc Inst Mech Eng H

2 Institute of Orthopaedics and Musculoskeletal Science, Division of Surgery & Interventional Science, University College London, Royal National Orthopaedic Hospital, Stanmore, UK.

Published: May 2019

Several studies have investigated the effect of low-magnitude-high-frequency vibration on the outcome of fracture healing in animal models. The aim of this study was to quantify and compare the micromovement at the fracture gap in a tibial fracture fixed with an external fixator in both a surrogate model of a tibial fracture and a cadaver human leg under static loading, both subjected to vibration. The constructs were loaded under static axial loads of 50, 100, 150 and 200 N and then subjected to vibration at each load using a commercial vibration platform, using a DVRT sensor to quantify static and dynamic fracture movement. The overall stiffness of the cadaver leg was significantly higher than the surrogate model under static loading. This resulted in a significantly higher fracture movement in the surrogate model. Under vibration, the fracture movements induced at the fracture gap in the surrogate model and the cadaver leg were 0.024 ± 0.009 mm and 0.016 ± 0.002 mm, respectively, at 200 N loading. Soft tissues can alter the overall stiffness and fracture movement recorded in biomechanical studies investigating the effect of various devices or therapies. While the relative comparison between the devices or therapies may remain valid, absolute magnitude of recordings measured externally must be interpreted with caution.

Download full-text PDF

Source
http://dx.doi.org/10.1177/0954411919837304DOI Listing

Publication Analysis

Top Keywords

fracture movement
16
surrogate model
16
tibial fracture
12
fracture
11
fracture gap
8
static loading
8
subjected vibration
8
cadaver leg
8
devices therapies
8
vibration
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!