Effluents from coal-fired power plant ash ponds are a major source of environmental contamination, annually loading more than a million metric tons of pollutants to aquatic ecosystems in the United States alone. Though this waste stream is characterized by elevated concentrations of numerous inorganic constituents, decades of previous research effort have focused on the ecotoxicological consequences of a single stressor: selenium. In this study, we compared concentrations of 10 trace elements among three North Carolina reservoirs with varying burdens following decades of coal combustion residual (CCR) inputs. Along this pollution gradient, we examined (1) environmental compartment-specific trace element enrichment relative to reference lake levels and (2) differences in CCR accumulation patterns among abiotic and biotic compartments. We report significant multivariate differences between CCR-receiving and reference lakes for surface water, pore water, sediment, and fish tissues as well as differences in CCR accumulation among North Carolina resident fish species. Multiple-element enrichment across receiving lake compartments additionally highlighted that CCR pollution is a mixtures contamination issue. Our results inform the ongoing discussion about effective regulation of impaired water bodies and identify important questions that might guide the monitoring of these systems as they recover.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.est.9b00324DOI Listing

Publication Analysis

Top Keywords

coal combustion
8
enrichment receiving
8
receiving lake
8
north carolina
8
differences ccr
8
ccr accumulation
8
selenium coal
4
combustion residuals
4
residuals lead
4
lead multielement
4

Similar Publications

Key drivers and source mechanisms of oxidative potential in fine particles from an industrial city of Northern China Plain.

Sci Total Environ

December 2024

State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.

The oxidative potential (OP) of particulate matter (PM) is crucial for understanding its ability to generate reactive oxygen species. However, the major chemical drivers influencing OP still need to be better understood. This study investigated the seasonal variations of OP and identified key drivers and source mechanisms in the industrial city of Zibo, located in North China Plain.

View Article and Find Full Text PDF

In many countries worldwide, NO emissions currently decrease as a result of pollution control, while NH emissions stagnate or continue to increase. Little is known about horizontal deposition of NO and NH, the oxidation/neutralization products of these primary pollutants. To close the knowledge gap, we studied atmospheric inputs of NO and NH at two mountain-top sites near the Czech-German-Polish borders during winter.

View Article and Find Full Text PDF

This study investigates aliphatic and polycyclic aromatic hydrocarbons in sediments from offshore Ghana, focusing on their distribution, sources, and ecological risk. Samples were collected from 15 sites near Deep Water Tano and West Cape Three Points blocks. GC-FID and GC-MS analyses revealed higher concentrations in West Cape Three Points compared to Deep Water Tano.

View Article and Find Full Text PDF

Coal mined in the shut-down Raša mine in Istria, Croatia had a high organic sulphur content. What has remained of its local combustion is a coal and ash waste (legacy site) whose trace element and radionuclide composition in soil has enduring consequences for the environment. The aim of this study was to follow up on previous research and investigate the potential impact on surrounding soil and local residents by characterising the site's ash and soil samples collected in two field campaigns.

View Article and Find Full Text PDF

To comprehensively explore syngas cocombustion technology, gasification experiments in a bench-scale circulating fluidized bed (CFB) and three-dimensional (3D) numerical simulations of a coal-fired boiler furnace have been conducted. In the amplification experiment of biomass gasification, sawdust has been gasified using air, oxygen-enriched air, and steam. The highest heating value of the syngas products reaches 12.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!