As human impacts on wildlife have become a topic of increasing interest, studies have focused on issues such as overexploitation and habitat loss. However, little research has examined potential anthropogenic impacts on animal behavior. Understanding the degree to which human interaction may alter natural animal behavior has become increasingly important in developing effective conservation strategies. We examined two populations of northern goshawks () in Montana and Finland. Goshawks in Finland were not protected until the late 1980s, and prior to this protection were routinely shot, as it was believed that shooting goshawks would keep grouse populations high. In the United States, Goshawk were not managed as predator control. Though aggressive nest defense has been characterized throughout North America, goshawks in Finland do not show this same behavior. To quantify aggression, we presented nesting goshawks with an owl decoy, a human mannequin, and a live human and recorded their responses to each of the trial conditions. We evaluated the recordings for time of response, duration of response, whether or not an active stimulus was present to elicit the response (i.e., movement or sound), and the sex of the bird making the response. We used -Test with unequal variance to compare mean number of responses and response duration. Our results suggested that goshawks in Montana exhibit more aggressive nest defense behaviors than those in Finland. While this could be due to some biotic or abiotic factor that we were not able to control for in a study on such a small scale, it is also possible that the results from this study suggest another underlying cause, such as an artificial selection pressure created by shooting goshawks.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6466203 | PMC |
http://dx.doi.org/10.3390/ani9030096 | DOI Listing |
Insects
December 2024
College of Plant Protection, South China Agricultural University, Guangzhou 510642, China.
Ants as social insects live in groups, which increases the risk of contagious diseases. In response to the threat of pathogens, ants have evolved a variety of defense mechanisms, including incorporating antimicrobial chemicals into nest material for nest hygiene. is an arboreal ant, building its nest using plant tissues.
View Article and Find Full Text PDFJ Exp Biol
January 2025
Program in Ecology, Evolution, and Conservation, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
Eggshell recognition in parental birds is vital for nest management, defense against brood parasitism, optimal embryonic development, and minimizing disease and predation risks. This process relies on acceptance thresholds balancing the risk of rejecting own eggs against the benefit of excluding foreign ones, following signal detection theory. We investigated the role of object shape in egg rejection decisions among three host species of the brown-headed cowbird (Molothrus ater), each with a varying known response to parasitic eggs.
View Article and Find Full Text PDFVirology
December 2024
Department of Microbiology, University of Delhi South Campus, New Delhi, 110021, India. Electronic address:
Proc Biol Sci
November 2024
Institute of Vertebrate Biology of the Czech Academy of Sciences, Květná 8, 60300, Brno, Czech Republic.
Batesian mimicry in brood parasites is often viewed as an evolutionary strategy to mitigate host aggression. Female common cuckoos () exhibit two morphs: the hawk-like grey and the rufous one, potentially maintained by apostatic selection. It was hypothesized that the grey morph's predator-like appearance deters host defences, while the rufous morph benefits from its rarity by evading host attention.
View Article and Find Full Text PDFR Soc Open Sci
October 2024
Department of Psychology, University of Wisconsin-Madison, Madison, WI 53706, USA.
We ask whether artificially induced testosterone pulses (T-pulses), administered to males in the wild at the territory boundary, adjust location preferences within the territory. Multiple transient T-pulses occurring after social interactions in males can alter behaviour and spatial preferences. We previously found that T-pulses administered at the nest induce male California mice, a biparental and territorial species, to spend more time at the nest likely through conditioned place preferences.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!