Restoration of barrier-tissue integrity after injury is dependent on the function of immune cells and stem cells (SCs) residing in the tissue. In response to skin injury, hair-follicle stem cells (HFSCs), normally poised for hair generation, are recruited to the site of injury and differentiate into cells that repair damaged epithelium. We used a SC fate-mapping approach to examine the contribution of regulatory T (Treg) cells to epidermal-barrier repair after injury. Depletion of Treg cells impaired skin-barrier regeneration and was associated with a Th17 inflammatory response and failed HFSC differentiation. In this setting, damaged epithelial cells preferentially expressed the neutrophil chemoattractant CXCL5, and blockade of CXCL5 or neutrophil depletion restored barrier function and SC differentiation after epidermal injury. Thus, Treg-cell regulation of localized inflammation enables HFSC differentiation and, thereby, skin-barrier regeneration, with implications for the maintenance and repair of other barrier tissues.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6507428PMC
http://dx.doi.org/10.1016/j.immuni.2019.02.013DOI Listing

Publication Analysis

Top Keywords

differentiation skin-barrier
8
stem cells
8
treg cells
8
skin-barrier regeneration
8
hfsc differentiation
8
cells
7
injury
5
treg-cell control
4
control cxcl5-il-17
4
cxcl5-il-17 inflammatory
4

Similar Publications

Oral administration of astaxanthin mitigates chronological skin aging in mice.

Biosci Biotechnol Biochem

December 2024

Graduate School of Agriculture, Kyoto University, Kyoto, Japan.

Intrinsic skin aging is a chronological decline in skin texture and function influenced largely by genetic factors. Aged skin exhibits morphological alterations, including wrinkling, dryness, and roughness, along with dysfunctional changes in the skin barrier. In this study, the in vivo anti-intrinsic aging efficacy of dietary astaxanthin extracted from Haematococcus pluvialis on the skin was evaluated using aged C57BL/6 J mice.

View Article and Find Full Text PDF

Purpose: Atopic dermatitis (AD) is the most common chronic inflammatory skin disease that severely impairs patient's life quality and represents significant therapeutic challenge due to its pathophysiology arising from skin barrier dysfunction. Topical corticosteroids, the mainstay treatment for mild to moderate AD, are usually formulated into conventional dosage forms that are impeded by low drug permeation, resulting in high doses with consequent adverse effects, and also lack properties that would strengthen the skin barrier. Herein, we aimed to develop biomimetic lamellar lyotropic liquid crystals (LLCs), offering a novel alternative to conventional AD treatment.

View Article and Find Full Text PDF

Background: The Yunnan-Guizhou Plateau's high-altitude setting is characterized by intense solar ultraviolet radiation, a significant environmental stressor that frequently leads to skin barrier damage. This damage presents clinically as erythema, itching, and desquamation, underscoring the need for effective reparative interventions.

Aims: The objective of this study was to assess the therapeutic efficacy of a novel treatment protocol that integrates non-crosslinked hyaluronic acid (HA) injection with microneedle application of human epidermal growth factor (hEGF) for the restoration of skin barrier function in regions of high altitude.

View Article and Find Full Text PDF

Although atopic dermatitis (AD) and type 2 diabetes mellitus (T2DM) may appear clinically and pathophysiologically unrelated, AD is a common skin disease characterized by chronic inflammation and skin barrier dysfunction, whereas T2DM is a metabolic disorder marked by hyperglycemia and chronic inflammation, which further exacerbates insulin resistance (IR) through the release of systemic inflammatory factors. Despite their apparent differences, the molecular mechanisms shared between AD and T2DM remain relatively unexplored. In this study, we integrated transcriptomic data from both AD and T2DM using differential gene expression analyses (DEGs), gene set variation analysis (GSVA), and machine learning algorithms to uncover common features of these diseases.

View Article and Find Full Text PDF

Atopic dermatitis (AD) is among the most frequently encountered skin diseases, bothering a considerable number of patients. Today, corticosteroids and antihistamines are among the numerous drugs applied for the therapy of AD. However, lengthy use of them contributes to side effects, such as physiological changes in skin.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!