Objective: The conventional AO buttress screw used for fracture fixation relies on a historic buttress thread design, which is prone to stripping at the bone-implant interface. We hypothesized that a new Bone-Screw-Fastener with an innovative interlocking thread design demonstrates increased resistance to torque stripping forces compared with the buttress screw, without compromising pullout strength.

Methods: A biomechanical model was established in 6 matched pairs of adult human cadaveric tibiae to test torque resistance between the 3.5 mm Bone-Screw-Fastener and the 3.5 mm cortical AO buttress screw until failure. Uniaxial pullout testing of both screw types was performed as an internal control experiment.

Results: The 3.5 mm Bone-Screw-Fastener had a significantly increased resistance to torque failure compared with the standard 3.5 mm AO buttress screw (P = 0.0145). In contrast to the buttress screws, none of the Bone-Screw-Fasteners stripped from the bone but rather failed at the screwdriver-implant interface in terms of a metal-on-metal failure. The internal control experiments revealed no significant difference in axial pullout strength between the 2 implants (P = 0.47).

Conclusions: These data demonstrate the superiority of the new Bone-Screw-Fastener over the conventional AO buttress screw regarding protection from torque stripping forces. In addition, the new thread design that interlocks to the bone does not sacrifice axial pullout resistance conveyed by the buttress screw. Future controlled trials will have to validate the in vivo relevance of these findings in a clinical setting.

Download full-text PDF

Source
http://dx.doi.org/10.1097/BOT.0000000000001415DOI Listing

Publication Analysis

Top Keywords

buttress screw
28
torque stripping
12
thread design
12
buttress
9
compared standard
8
standard buttress
8
screw
8
conventional buttress
8
increased resistance
8
resistance torque
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!