The current clinical paradigm for ovarian cancer treatment has a poor prognosis, partially due to the efficacy and toxicity concerns associated with the available chemotherapeutic formulations. To overcome these limitations, we have designed core-shell-structured paclitaxel (PTX) laden solid lipid microparticles (PTX-SLMPs) for intraperitoneal treatment of ovarian cancer. A single-step coaxial electro hydrodynamic atomization (CEHDA) process has been explored to synthesize core-shell structure of PTX-SLMPs with the particle size of 1.76 ± 0.37 µm. Core-shell PTX-SLMPs have high encapsulation efficiency of 94.73% with sustained drug release profile. In vitro evaluation of PTX-SLMPs in SKOV-3 ovarian cancer cells yield significant enhancement in cytotoxicity when compared with Taxol®. In vivo pharmacokinetic study demonstrated slower absorption of PTX into the systemic circulation after intraperitoneal (i.p.) administration of PTX-SLMPs in Wistar rats implying the PTX-SLMPs remained in the peritoneal cavity and released the PTX for prolonged period of time. Through these studies, we have demonstrated the technical potential of core-shell structured PTX-SLMPs, which can enhance passive targeting of PTX to the tumor in the treatment of not only ovarian cancer but also in other peritoneal cancer.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1080/21691401.2019.1576705 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!