Chronic intermittent hypoxia (CIH) is a model of the hypoxemia from sleep apnea that causes a sustained increase in blood pressure. Inhibition of the central renin-angiotensin system or FosB in the median preoptic nucleus (MnPO) prevents the sustained hypertensive response to CIH. We tested the hypothesis that angiotensin type 1a (AT1a) receptors in the MnPO, which are upregulated by CIH, contribute to this hypertension. In preliminary experiments, retrograde tract tracing studies showed AT1a receptor expression in MnPO neurons projecting to the paraventricular nucleus. Adult male rats were exposed to 7 days of intermittent hypoxia (cycling between 21% and 10% O every 6 min, 8 h/day during light phase). Seven days of CIH was associated with a FosB-dependent increase in AT1a receptor mRNA without changes in the permeability of the blood-brain barrier in the MnPO. Separate groups of rats were injected in the MnPO with an adeno-associated virus containing short hairpin (sh)RNA against AT1a receptors to test their role in intermittent hypoxia hypertension. Injections of shRNA against AT1a in MnPO blocked the increase in mRNA associated with CIH, prevented the sustained component of the hypertension during normoxia, and reduced circulating advanced oxidation protein products, an indicator of oxidative stress. Rats injected with shRNA against AT1a and exposed to CIH had less FosB staining in MnPO and the rostral ventrolateral medulla after intermittent hypoxia than rats injected with the control vector that were exposed to CIH. Our results indicate AT1a receptors in the MnPO contribute to the sustained blood pressure increase to intermittent hypoxia.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6589598PMC
http://dx.doi.org/10.1152/ajpregu.00393.2018DOI Listing

Publication Analysis

Top Keywords

intermittent hypoxia
20
at1a receptors
12
rats injected
12
shrna at1a
12
angiotensin type
8
median preoptic
8
preoptic nucleus
8
blood pressure
8
mnpo
8
receptors mnpo
8

Similar Publications

Associations of fat, bone, and muscle indices with disease severity in patients with obstructive sleep apnea hypopnea syndrome.

Sleep Breath

January 2025

Department of Pulmonary and Critical Care Medicine, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, No.1 Da Hua Road, Dong Dan, Dongcheng District, Beijing, 100730, PR China.

Purpose: To investigate the relationship between obstructive sleep apnea hypopnea syndrome (OSAHS) severity and fat, bone, and muscle indices.

Methods: This study included 102 patients with OSAHS and retrospectively reviewed their physical examination data. All patients underwent polysomnography, body composition analysis, dual-energy X-ray absorptiometry, computed tomography (CT) and blood test.

View Article and Find Full Text PDF

Introduction: Obstructive sleep apnoea (OSA) is characterised by blood oxygen desaturations and sleep disruptions manifesting undesirable consequences. Existing treatments including oral appliances, positive airway pressure (PAP) therapy and surgically altering the anatomy of the pharynx have drawbacks including poor long-term adherence or often involving irreversible, invasive procedures. Bilateral hypoglossal nerve stimulation (HNS) is a new treatment for managing OSA, and this study is intended to determine whether an HNS system is a safe and effective treatment option for adults with OSA.

View Article and Find Full Text PDF

Background: Obstructive sleep apnea (OSA) is frequently associated with increased incidence and mortality of pulmonary hypertension (PH). The immune response contributes to pulmonary artery remodeling and OSA-related diseases. The immunologic factors linked to OSA-induced PH are not well understood.

View Article and Find Full Text PDF

Obstructive Sleep Apnea (OSA) is a prevalent sleep disorder marked by repeated episodes of partial or complete upper airway obstruction during sleep, which leads to intermittent hypoxia and fragmented sleep. These disruptions negatively impact cardiovascular health, metabolic function, and overall quality of life. Obesity is a major modifiable risk factor for OSA, as it contributes to both anatomical and physiological mechanisms that increase the likelihood of airway collapse during sleep.

View Article and Find Full Text PDF

Intermittent hypoxemia (IH), a pathophysiologic consequence of obstructive sleep apnea (OSA), adversely affects insulin sensitivity, insulin secretion, and glucose tolerance. Nifedipine, an L-type calcium channel blocker frequently used for treatment of hypertension, can also impair insulin sensitivity and secretion. However, the cumulative and interactive repercussions of IH and nifedipine on glucose homeostasis have not been previously investigated.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!