Inhibition of VEGFR-2 Phosphorylation and Effects on Downstream Signaling Pathways in Cultivated Human Endothelial Cells by Stilbenes from Vitis Spp.

J Agric Food Chem

Departamento de Nutrición y Bromatología, Toxicología y Medicina Legal, Facultad de Farmacia , Universidad de Sevilla , C/Profesor García González 2 , 41012 , Sevilla , Spain.

Published: April 2019

Stilbenes are phenolic compounds present in different higher plant families that have shown different biological activities, such as antioxidant properties and antitumoral and anti-atherosclerotic effects, among others. Angiogenesis is a key process involved in both cancer and cardiovascular diseases, the vascular endothelial growth factor (VEGF) and its receptor VEGFR-2 being the main triggers. Certain polyphenol compounds, such as flavonoids, have shown a potent capacity to inhibit VEGF and, consequently, angiogenesis. The present work, therefore, aims to evaluate the potential effect of stilbenes on inhibiting VEGF and their subsequent effect on the downstream signaling pathway (PLCγ1, Akt, and eNOS). VEGFR-2 activation was studied through an ELISA assay in the HUVEC line, while the phosphorylation of intracellular downstream proteins PLCγ1, Akt, and eNOS was tested by Western blot. Student's t test was used to determine significant differences between samples. On the one hand, astringin, pallidol, and ω-viniferin showed the lowest IC values (2.90 ± 0.27, 4.42 ± 0.67, and 6.10 ± 1.29 μM, respectively) against VEGFR-2 activation. Additionally, VEGF-induced PLCγ1 phosphorylation was significantly inhibited by ε-viniferin, astringin, and ω-viniferin. However, ε-viniferin and pallidol simultaneously enhanced eNOS activation, proving to be via Akt activation in the case of ε-viniferin. For the first time, these data suggest that stilbenes such as astringin, pallidol, ω-viniferin, and ε-viniferin have a potential anti-angiogenic effect and they could be further considered as anti-VEGF ingredients in food and beverages. In addition, ε-viniferin and pallidol significantly allowed eNOS activation and could likely prevent the side effects caused by anti-VEGF hypertension drugs.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jafc.9b00282DOI Listing

Publication Analysis

Top Keywords

downstream signaling
8
plcγ1 akt
8
akt enos
8
vegfr-2 activation
8
astringin pallidol
8
pallidol ω-viniferin
8
ω-viniferin ε-viniferin
8
ε-viniferin pallidol
8
enos activation
8
activation
5

Similar Publications

Epidermal growth factor receptor (EGFR) plays an important role in the regulation of cell proliferation and migration [1]. It forms a homodimer or heterodimer with other ErbB receptor family members to activate downstream signaling. Emerging evidence indicates that the EGFR activity and downstream signaling are regulated by other proteins except its family members during tumorigenesis.

View Article and Find Full Text PDF

A sustained blood-stage infection of the human malaria parasite P. falciparum relies on the active exit of merozoites from their host erythrocytes. During this process, named egress, the infected red blood cell undergoes sequential morphological events: the rounding-up of the surrounding parasitophorous vacuole, the disruption of the vacuole membrane and finally the rupture of the red blood cell membrane.

View Article and Find Full Text PDF

Purpose Of Review: The purpose of this review is to summarize the current understanding of cell-autonomous innate immune pathways that contribute to bone homeostasis and disease.

Recent Findings: Germ-line encoded pattern recognition receptors (PRRs) are the first line of defense against danger and infections. In the bone microenvironment, PRRs and downstream signaling pathways, that mount immune defense, interface intimately with the core cellular processes in bone cells to alter bone formation and resorption.

View Article and Find Full Text PDF

Tianxiangdan suppresses foam cell formation by enhancing lipophagy and reduces the progression of atherosclerosis.

In Vitro Cell Dev Biol Anim

January 2025

College of Traditional Chinese Medicine, Xinjiang Uygur Autonomous Region, Xinjiang Medical University, Urumqi, 830063, China.

The aim of this study is to assess the impact of Tianxiangdan (TXD) on lipophagy in foam cells and its underlying mechanism in treating atherosclerosis, particularly focusing on its efficacy in lowering blood lipids. In vivo, ApoE-/- atherosclerosis mouse models were established for group intervention. Blood lipid levels of the mice were measured, lipid deposition and autophagy levels in atherosclerotic plaques were assessed, and co-localization of lipid droplets and autophagosomes was examined.

View Article and Find Full Text PDF

Identities of functional pSer/Thr.Pro protein substrates of the PIN1 prolyl isomerase and its effects on downstream signaling in bladder carcinogenesis remain largely unknown. Phenotypically, we found that PIN1 positively regulated bladder cancer cell proliferation, cell motility and urothelium clearance capacity in vitro and controlled tumor growth and potential metastasis in vivo.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!