The traditional bacterial identification method of growing colonies on agar plates can take several days to weeks to complete depending on the growth rate of the bacteria. Successfully decreasing this analysis time requires cell isolation followed by identification. One way to decrease analysis time is by combining dielectrophoresis (DEP), a common technique used for cell sorting and isolation, and Raman spectroscopy for cell identification. DEP-Raman devices have been used for bacterial analysis, however, these devices have a number of drawbacks including sample heating, cell-to-electrode proximity that limits throughput and separation efficiency, electrode fouling, or inability to address sample debris. Presented here is a contactless DEP-Raman device to simultaneously isolate and identify particles from a mixed sample while avoiding common drawbacks associated with other DEP designs. Using the device, a mixed sample of bacteria and 3 μm polystyrene spheres were isolated from each other and a Raman spectrum of the trapped bacteria was acquired, indicating the potential for cDEP-Raman devices to decrease the analysis time of bacteria.

Download full-text PDF

Source
http://dx.doi.org/10.1002/elps.201800389DOI Listing

Publication Analysis

Top Keywords

analysis time
12
raman spectroscopy
8
decrease analysis
8
mixed sample
8
bacteria
5
simultaneous isolation
4
isolation label-free
4
identification
4
label-free identification
4
identification bacteria
4

Similar Publications

Introduction: The traditional Chinese medicine formula, Bushen Daozhuo Granules (BSDZG), is used to treat chronic non-bacterial prostatitis (CNP) clinically. However, its mechanism of action is unclear. The aim of our study was to determine the effect of BSDZG on CNP and its underlying mechanisms.

View Article and Find Full Text PDF

TSPOAP1-AS1: A Novel Biomarker for the Prognosis and Therapeutic Target in Cervical Cancer.

Comb Chem High Throughput Screen

January 2025

Thoracic and Abdominal Radiotherapy Department I, Meizhou People's Hospital, Meizhou 514031, Guangdong, China.

Background: TSPOAP1 antisense RNA 1 (TSPOAP1-AS1) is a long non-coding RNA (lncRNA) that has received widespread attention in oncology research in recent years. Its role and mechanism in some cancers have gradually been revealed. However, it is not clear what role TSPOAP1-AS1 plays in cervical cancer (CESC).

View Article and Find Full Text PDF

Background: Peroral endoscopic myotomy (POEM) is a well-established endoscopic treatment for achalasia, utilizing an endoscopic knife for dissection. Recently, new knives with an integrated water-jet (WJ) function have been introduced. This study aims to compare the technical, perioperative, and late postoperative outcomes between WJ knives and conventional (C) knives, which lack the WJ function, through a pairwise meta-analysis of published comparative studies.

View Article and Find Full Text PDF

Posterior Peroral Endoscopic Myotomy With Versus Without Sparing of the Oblique/Sling Fibers: A Meta-analysis.

Surg Laparosc Endosc Percutan Tech

January 2025

Department of Surgery, Division of Gastrointestinal Surgery, University of South Florida, Morsani College of Medicine, Tampa, FL.

Background And Aims: Several studies have hypothesized that sparing the oblique/sling fibers during posterior peroral endoscopic myotomy (POEM) may reduce the incidence of gastroesophageal reflux disease (GERD) and reflux esophagitis without compromising the established safety and efficacy of the procedure. This study compares perioperative, postoperative motility-related, and postoperative GERD-related outcomes between posterior oblique/sling fibers-sparing POEM (OFS-POEM) and conventional posterior POEM through a pairwise meta-analysis of comparative studies.

Methods: We conducted a systematic literature review following PRISMA guidelines to identify articles directly comparing posterior OFS-POEM with conventional posterior POEM.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!