Etioplasts developed in angiosperm cotyledon cells in darkness rapidly differentiate into chloroplasts with illumination. This process involves dynamic transformation of internal membrane structures from the prolamellar bodies (PLBs) and prothylakoids (PTs) in etioplasts to thylakoid membranes in chloroplasts. Although two galactolipids, monogalactosyldiacylglycerol (MGDG) and digalactosyldiacylglycerol (DGDG), are predominant lipid constituents of membranes in both etioplasts and chloroplasts, their roles in the structural and functional transformation of internal membranes during etioplast-to-chloroplast differentiation are unknown. We previously reported that a 36% loss of MGDG by an artificial microRNA targeting major MGDG synthase (amiR-MGD1) only slightly affected PLB structures but strongly impaired PT formation and protochlorophyllide biosynthesis. Meanwhile, strong DGDG deficiency in a DGDG synthase mutant (dgd1) disordered the PLB lattice structure in addition to impaired PT development and protochlorophyllide biosynthesis. In this study, thylakoid biogenesis after PLB disassembly with illumination was strongly perturbed by amiR-MGD1. The amiR-MGD1 expression impaired the accumulation of Chl and the major light-harvesting complex II protein (LHCB1), which may inhibit rapid transformation from disassembled PLBs to the thylakoid membrane. As did amiR-MGD1 expression, dgd1 mutation impaired the accumulation of Chl and LHCB1 during etioplast-to-chloroplast differentiation. Furthermore, unlike in amiR-MGD1 seedlings, in dgd1 seedlings, disassembly of PLBs after illumination was retarded. Because DGDG but not MGDG prefers to form the bilayer lipid phase in membranes, the MGDG-to-DGDG ratio may strongly affect the transformation of PLBs to the thylakoid membrane during etioplast-to-chloroplast differentiation.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6553665 | PMC |
http://dx.doi.org/10.1093/pcp/pcz041 | DOI Listing |
Plants (Basel)
September 2019
Faculty of Liberal Arts and Sciences, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai 599-8531, Japan.
Galactolipids, monogalactosyldiacylglycerol (MGDG) and digalactosyldiacylglycerol (DGDG), are the predominant lipid classes in the thylakoid membrane of chloroplasts. These lipids are also major constituents of internal membrane structures called prolamellar bodies (PLBs) and prothylakoids (PTs) in etioplasts, which develop in the cotyledon cells of dark-grown angiosperms. Analysis of Arabidopsis mutants defective in the major galactolipid biosynthesis pathway revealed that MGDG and DGDG are similarly and, in part, differently required for membrane-associated processes such as the organization of PLBs and PTs and the formation of pigment-protein complexes in etioplasts.
View Article and Find Full Text PDFPlant Cell Physiol
June 2019
Faculty of Liberal Arts and Sciences, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka, Japan.
Etioplasts developed in angiosperm cotyledon cells in darkness rapidly differentiate into chloroplasts with illumination. This process involves dynamic transformation of internal membrane structures from the prolamellar bodies (PLBs) and prothylakoids (PTs) in etioplasts to thylakoid membranes in chloroplasts. Although two galactolipids, monogalactosyldiacylglycerol (MGDG) and digalactosyldiacylglycerol (DGDG), are predominant lipid constituents of membranes in both etioplasts and chloroplasts, their roles in the structural and functional transformation of internal membranes during etioplast-to-chloroplast differentiation are unknown.
View Article and Find Full Text PDFPlant Cell
April 2016
Department of Plant Anatomy and Cytology, Faculty of Biology, University of Warsaw, 02-096 Warsaw, Poland
Chloroplast biogenesis is a complex process that is integrated with plant development, leading to fully differentiated and functionally mature plastids. In this work, we used electron tomography and confocal microscopy to reconstruct the process of structural membrane transformation during the etioplast-to-chloroplast transition in runner bean (Phaseolus coccineus). During chloroplast development, the regular tubular network of paracrystalline prolamellar bodies (PLBs) and the flattened porous membranes of prothylakoids develop into the chloroplast thylakoids.
View Article and Find Full Text PDFPlant Cell Environ
July 2016
Centre for Organelle Research, Faculty of Science and Technology, University of Stavanger, N-4036, Stavanger, Norway.
Etioplasts lack thylakoid membranes and photosystem complexes. Light triggers differentiation of etioplasts into mature chloroplasts, and photosystem complexes assemble in parallel with thylakoid membrane development. Plastids isolated at various time points of de-etiolation are ideal to study the kinetic biogenesis of photosystem complexes during chloroplast development.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!