Microwire and microelectrode arrays used for cortical neural recording typically consist of tens to hundreds of recording sites, but often only a fraction of these sites are in close enough proximity to firing neurons to record single-unit activity. Recent work has demonstrated precise, depth-controllable mechanisms for the insertion of single neural recording electrodes, but these methods are mostly only capable of inserting electrodes which elicit an adverse biological response. We present an electrostatic-based actuator capable of inserting individual carbon fiber microelectrodes which elicit minimal to no adverse biological response. The device is shown to insert a carbon fiber recording electrode into an agar brain phantom and can record an artificial neural signal in saline. This technique provides a platform generalizable to many microwire-style recording electrodes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1109/TNB.2019.2905505 | DOI Listing |
Sci Rep
January 2025
Nanjing ShengNuo Heat Pipe Limited Company, Nanjing, 210009, China.
This study investigates the feasibility of using nano-thermal rod for deicing tunnel pavements in cold region. The heating performance of the nano-thermal rod was compared with that of carbon fiber heating wire under low voltage conditions. Experimental studies were conducted in a controlled environmental chamber to evaluate the effects of arrangement parameters (spacing, buried depth, input power) and environmental factors (ambient temperature and moisture) on heating rate and effectiveness.
View Article and Find Full Text PDFSci Rep
January 2025
Biomedical Engineering Department, Faculty of Engineering, Helwan University, Cairo, Egypt.
Car accidents, infections caused by bacteria or viruses, metastatic lesions, tumors, and malignancies are the most frequent causes of chest wall damage, leading to the removal of the affected area. After excision, artificial bone or synthetic materials are used in chest wall reconstruction to restore the skeletal structure of the chest. Chest implants have traditionally been made from metallic materials like titanium alloys due to their biocompatibility and durability.
View Article and Find Full Text PDFAnal Chim Acta
January 2025
State Key Laboratory of Electroanalytical Chemistry, Jilin Province Key Laboratory of Low Carbon Chemical Power, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, Jilin, China; School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, Anhui, China. Electronic address:
Background: Scanning electrochemical microscopy (SECM) is a kind of scanning probe technology that enables the obtainment of surface morphology and electrochemical information by recording changes in Faraday current triggered by the movement of probe.
Results: In this work, flexible disk ultramicroelectrode (UME) with highly repeatable geometry are fabricated through a simple and universal strategy that involves vacuum pulling the glass capillaries inserted with platinum wire (gold wire, carbon fiber, etc.), followed by a rapidly heated sealing and polishing process.
Int J Biol Macromol
January 2025
College of Chemistry Engineering and Materials Science, Tianjin University of Science and Technology, Tianjin 300457, China.
The durability and flame retardancy of cotton fabrics have been the focus of long-term research. In this paper, a method for preparing flame retardants through the direct modification of biomass was proposed, and the durable flame retardant of homologous cottonseed meal modified biomass flame retardants for cotton fabrics was achieved through biomass composition analysis and modeling. In this study, a cottonseed meal-phosphoric acid-boric acid synergistic bio-based flame retardant (CPB) was synthesized and characterized.
View Article and Find Full Text PDFGait Posture
December 2024
Department of Physical Therapy and Rehabilitation Science, Carver College of Medicine, University of Iowa, Iowa City, IA, USA.
Background: Carbon fiber custom dynamic orthoses have been used to improve gait mechanics after lower limb trauma in military service members, with the goal of restoring function and improving outcomes. However, the effects of commercially available carbon fiber orthoses available to civilians on lower extremity joint kinetics and kinematics are poorly understood.
Research Question: The aim of this study was to examine the effect of two commercially available orthoses on lower extremity kinematics and kinetics in individuals with lower limb trauma.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!