Glial encapsulation of chronically implanted neural probes inhibits recording and stimulation, and this signal loss is a significant factor limiting the clinical viability of most neural implant topologies for decades-long implantation. We demonstrate a mechanical proof of concept for silicon shank-style neural probes intended to minimize gliosis near the recording sites. Compliant whiskers on the edges of the probe fold inward to minimize tissue damage during insertion. Once implanted to the target depth and retracted slightly, these whiskers splay outward. The splayed tips, on which recording sites could be patterned, extend beyond the typical 50-100 [Formula: see text] radius of a glial scar. The whiskers are micrometer-scale to minimize or avoid glial scarring. Electrically inactive devices with whiskers of varying widths and curvature were designed and monolithically fabricated from a 5- [Formula: see text] silicon-on-insulator (SOI) wafer, and their mechanical functionality was demonstrated in a 0.6% agar brain phantom. Deflection was plotted versus deflection speed, and those that were most compliant actuated successfully. This probe requires no preparation for use beyond what is typical for a shank-style silicon probe.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1109/TNB.2019.2905468 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!