6-Diazo-5-oxo-l-norleucine (DON) is a glutamine antagonist with robust anticancer efficacy; however, its therapeutic potential was hampered by its biodistribution and toxicity to normal tissues, specifically gastrointestinal (GI) tissues. To circumvent DON's toxicity, we synthesized a series of tumor-targeted DON prodrugs designed to circulate inert in plasma and preferentially activate over DON in tumor. Our best prodrug 6 (isopropyl 2-(6-acetamido-2-(adamantane-1-carboxamido)hexanamido)-6-diazo-5-oxohexanoate) showed stability in plasma, liver, and intestinal homogenates yet was readily cleaved to DON in P493B lymphoma cells, exhibiting a 55-fold enhanced tumor cell-to-plasma ratio versus that of DON and resulting in a dose-dependent inhibition of cell proliferation. Using carboxylesterase 1 knockout mice that were shown to mimic human prodrug metabolism, systemic administration of 6 delivered 11-fold higher DON exposure to tumor (target tissue; AUC = 5.1 nmol h/g) versus GI tissues (toxicity tissue; AUC = 0.45 nmol h/g). In summary, these studies describe the discovery of a glutamine antagonist prodrug that provides selective tumor exposure.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8025739PMC
http://dx.doi.org/10.1021/acs.jmedchem.8b02009DOI Listing

Publication Analysis

Top Keywords

6-diazo-5-oxo-l-norleucine don
8
glutamine antagonist
8
tissue auc
8
nmol h/g
8
don
7
tumor-targeted delivery
4
delivery 6-diazo-5-oxo-l-norleucine
4
don substituted
4
substituted acetylated
4
acetylated lysine
4

Similar Publications

Ovarian cancer (OC) is a highly malignant gynecological tumor, and its effective treatment is frequently impeded by drug resistance and recurrent tumor growth. The reprogramming of glutamine metabolism in ovarian cancer is closely associated with tumor progression and the immunosuppressive tumor microenvironment. Recently, targeting metabolic reprogramming has emerged as a promising approach for cancer therapy.

View Article and Find Full Text PDF

Breast cancer (BC) ranks among the most prevalent malignancies affecting women, with advanced-stage patients facing an increased mortality risk. Myeloid-derived suppressor cells (MDSCs) contribute significantly to poor prognostic outcomes. Research has concentrated predominantly on the immunological mechanisms underlying MDSC functions, but a comprehensive investigation into the metabolic interactions between BC cells and MDSCs is lacking.

View Article and Find Full Text PDF

Energy is necessary for tumor cell viability and growth. Aerobic glucose-driven lactic acid fermentation is a common metabolic phenotype seen in most cancers including malignant gliomas. This metabolic phenotype is linked to abnormalities in mitochondrial structure and function.

View Article and Find Full Text PDF

Lung adenocarcinoma, recognized as one of the most formidable malignancies with a dismal prognosis and low survival rates, poses a significant challenge in its treatment. This article delineates the design and development of a carbon dot-vesicle conjugate (HACD-TMAV) for efficient cytotoxicity towards lung cancer cells by target selective delivery of the glutamine inhibitor 6-diazo-5-oxo-L-norleucine (DON) within CD44-enriched A549 cancer cells. HACD-TMAV is composed of hyaluronic acid-based carbon dots (HACDs) and trimesic acid-based vesicles (TMAV), which are bound electrostatic interactions.

View Article and Find Full Text PDF
Article Synopsis
  • * Researchers found that using a glutamine antagonist called DON reduced bladder cancer cell growth and inhibited tumor growth in mice with a modified drug (JHU083) to reduce side effects.
  • * However, prolonged treatment altered T-cell immune response, increasing PD-L1 expression in cancer cells; combining JHU083 with gefitinib helped counteract this and improved treatment effectiveness.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!