Purpose: This study is devoted to optimizing and characterizing the response of a multipoint plastic scintillator detector (mPSD) for application to in vivo dosimetry in high dose rate (HDR) brachytherapy.
Methods: An exhaustive analysis was carried out in order to obtain an optimized mPSD design that maximizes the scintillation light collection produced by the interaction of ionizing photons. More than 20 prototypes of mPSD were built and tested in order to determine the appropriate order of scintillators relative to the photodetector (distal, center, or proximal) as well as their length as a function of the scintillation light emitted. The available detecting elements are the BCF-60, BCF-12, and BCF-10 scintillators (Saint Gobain Crystals, Hiram, OH, USA), separated from each other by segments of Eska GH-4001 clear optical fibers (Mitsubishi Rayon Co., Ltd., Tokyo, Japan). The contribution of each scintillator to the total spectrum was determined by irradiations in the low energy range (<120 keV). For the best mPSD design, a numerical optimization was done in order to select the optical components [dichroic mirrors, filters, and photomultipliers tubes (PMTs)] that best match the light emission profile. Calculations were performed taking into account the measured scintillation spectrum and light yield, the manufacturer-reported transmission and attenuation of the optical components, and the experimentally characterized PMT noise. The optimized dosimetric system was used for HDR brachytherapy measurements. The system was independently controlled from the Ir source via LabVIEW and read simultaneously using an NI-DAQ board. Dose measurements as a function of distance from the source were carried out according to TG-43U1 recommendations. The system performance was quantified in terms of signal to noise ratio (SNR) and signal to background ratio (SBR).
Results: For best overall light-yield emission, it was determined that BCF-60 should be placed at the distal position, BCF-12 in the center, and BCF-10 at the proximal position with respect to the photodetector. This configuration allowed for optimized light transmission through the collecting fiber and avoided inter-scintillator excitation and self-absorption effects. The optimal scintillator length found was of 3, 6, and 7 mm for BCF-10, BCF- 12, and BCF-60, respectively. The optimized luminescence system allowed for signal deconvolution using a multispectral approach, extracting the dose to each element while taking into account the Cerenkov stem effect. Differences between the mPSD measurements and TG-43U1 remain below 5% in the range of 0.5 to 6.5 cm from the source. The dosimetric system can properly differentiate the scintillation signal from the background for a wide range of dose rate conditions; the SNR was found to be above 5 for dose rates above 22 mGy/s while the minimum SBR measured was 1.8 at 6 mGy/s.
Conclusion: Based on the spectral response at different conditions, an mPSD was constructed and optimized for HDR brachytherapy dosimetry. It is sensitive enough to allow multiple simultaneous measurements over a clinically useful distance range, up to 6.5 cm from the source. This study constitutes a baseline for future applications enabling real-time dose measurements and source position reporting over a wide range of dose rate conditions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/mp.13498 | DOI Listing |
Acta Biomater
September 2024
Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xian 710127, Shaanxi, China; Institute of Materials Science and New Technology, Northwest University, Xian 710127, Shaanxi, China. Electronic address:
Thrombosis and plasma leakage are two of the most frequent dysfunctions of polypropylene (PP) hollow fiber membrane (PPM) used in extracorporeal membrane oxygenation (ECMO) therapy. In this study, a superhydrophilic endothelial membrane mimetic coating (SEMMC) was constructed on polydopamine-polyethyleneimine pre-coated surfaces of the PPM oxygenator and its ECMO circuit to explore safer and more sustainable ECMO strategy. The SEMMC is fabricated by multi-point anchoring of a phosphorylcholine and carboxyl side chained copolymer (PMPCC) and grafting of heparin (Hep) to form PMPCC-Hep interface, which endows the membrane superior hemocompatibility and anticoagulation performances.
View Article and Find Full Text PDFMed Phys
October 2024
Department of Human Oncology, University of Wisconsin-Madison, Madison, Wisconsin, USA.
Background: Cardiac applications in radiation therapy are rapidly expanding including magnetic resonance guided radiation therapy (MRgRT) for real-time gating for targeting and avoidance near the heart or treating ventricular tachycardia (VT).
Purpose: This work describes the development and implementation of a novel multi-modality and magnetic resonance (MR)-compatible cardiac phantom.
Methods: The patient-informed 3D model was derived from manual contouring of a contrast-enhanced Coronary Computed Tomography Angiography scan, exported as a Stereolithography model, then post-processed to simulate female heart with an average volume.
Med Phys
September 2024
Department of Human Oncology, University of Wisconsin-Madison, Madison, Wisconsin, USA.
Background: MRI-guided radiation therapy (MRgRT) requires unique quality assurance equipment to address MR-compatibility needs, minimize electron return effect, handle complex dose distributions, and evaluate real-time dosimetry for gating. Plastic scintillation detectors (PSDs) are an attractive option to address these needs.
Purpose: To perform a comprehensive characterization of a multi-probe PSD system in a low-field 0.
PLoS One
April 2024
Department of Engineering Design, Indian Institute of Technology, Chennai, Tamil Nadu, India.
Metal cutting has been extensively studied over the years for improving its efficacy, yet, parasitic mechanisms like chatter and tool wear continue to generate higher forces and energy consumption with poor surface integrity. To address these parasitic mechanisms, a single-point turning cutter design is proposed based on the physics-of-machining including chatter theory to achieve reduced power consumption during the cutting of various metallic alloys like Al-6061, Ti-6Al-4V and others used by critical sectors such as aerospace and automotive. The current work focuses on aspects of machining that effectively reduce parasitic forces feeding into cutting power.
View Article and Find Full Text PDFACS Appl Mater Interfaces
April 2024
Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States.
Frontal polymerization (FP) is an approach for thermosetting plastics at a lower energy cost than an autoclave. The potential to generate simultaneous propagation of multiple polymerization fronts has been discussed as an exciting possibility. However, FP initiated at more than two points simultaneously has not been demonstrated.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!