Electric fields are widely used for controlling liquids in various research fields. To control a liquid, an alternating current (AC) electric field can offer unique advantages over a direct current (DC) electric field, such as fast and programmable flows and reduced side effects, namely the generation of gas bubbles. Here, we demonstrate one-directional flow along carbon nanotube nanowires under an AC electric field, with no additional equipment or frequency matching. This phenomenon has the following characteristics: First, the flow rates of the transported liquid were changed by altering the frequency showing Gaussian behaviour. Second, a particular frequency generated maximum liquid flow. Third, flow rates with an AC electric field (approximately nanolitre per minute) were much faster than those of a DC electric field (approximately picolitre per minute). Fourth, the flow rates could be controlled by changing the applied voltage, frequency, ion concentration of the solution and offset voltage. Our finding of microfluidic control using an AC electric field could provide a new method for controlling liquids in various research fields.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6408404 | PMC |
http://dx.doi.org/10.1098/rsos.180657 | DOI Listing |
Nat Commun
January 2025
Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China.
Prussian blue analogs (PBAs), as a classical kind of microporous materials, have attracted substantial interests considering their well-defined framework structures, unique physicochemical properties and low cost. However, PBAs typically adopt cubic structure that features small pore size and low specific surface area, which greatly limits their practical applications in various fields ranging from gas adsorption/separation to energy conversion/storage and biomedical treatments. Here we report the facile and general synthesis of unconventional hexagonal open PBA structures.
View Article and Find Full Text PDFNat Commun
January 2025
State Key Laboratory of Terahertz and Millimeter Waves, City University of Hong Kong, Hong Kong, 999077, China.
Terahertz (THz) lens constitutes a vital component in the THz system. Metasurfaces-based THz metalenses and classical bulky lenses are severely constrained by chromatic/ spherical aberration and the diffraction limit. Consequently, achromatic super-resolution THz lenses are urgently needed.
View Article and Find Full Text PDFSci Data
January 2025
Department of Anatomy and Anthropology, Faculty of Medical & Health Sciences, Tel- Aviv University, Tel-Aviv, 699780, Israel.
This data descriptor presents a comprehensive and replicable dataset and method for calculating the cervical range of motion (CROM) utilizing quaternion-based orientation analysis from Delsys inertial measurement unit (IMU) sensors. This study was conducted with 14 participants and analyzed 504 cervical movements in the Sagittal, Frontal and Horizontal planes. Validated against a Universal Goniometer and tested for reliability and reproducibility.
View Article and Find Full Text PDFPhys Med Biol
January 2025
Faculty of Mathematics and Natural Sciences , Hochschule Darmstadt, Schöfferstr., 3, Darmstadt, Hessen, 64295, GERMANY.
Magnetic Particle Imaging (MPI) is an emerging medical imaging modality which has gained increasing interest in recent years. Among the benefits of MPI are its high temporal resolution, and that the technique does not expose the specimen to any kind of ionizing radiation. It is based on the non-linear response of magnetic nanoparticles to an applied magnetic field.
View Article and Find Full Text PDFBiophys Chem
December 2024
Theoretical Molecular Science Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan; Computational Biophysics Research Group, RIKEN Center for Computational Science, 7-1-26 Minatojima-Minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan; Laboratory for Biomolecular Function Simulation, RIKEN Center for Biosystems Dynamics Research, 1-6-5 Minatojima-Minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan.
Membrane potential is essential in biological signaling and homeostasis maintained by voltage-sensitive membrane proteins. Molecular dynamics (MD) simulations incorporating membrane potentials have been extensively used to study the structures and functions of ion channels and protein pores. They can also be beneficial in designing and characterizing artificial ion channels and pores, which will guide further amino acid sequence optimization through comparison between the predicted models and experimental data.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!